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Abstract

In the past two decades, the field of randomized numerical linear algebra has been extremely successful
in developing algorithmic techniques for the problem of matrix approximation, in which large matrices
are approximated by much smaller ones. This problem is fundamental to many areas of mathematics
and computer science, and algorithmically, matrix approximation has found applications ranging from
machine learning to graph algorithms to computational geometry and beyond.

In this thesis proposal, we further develop the theory of matrix approximation algorithms from the
perspective of randomized numerical linear algebra, drawing particularly heavily from techniques based
on sampling and sketching. We focus on obtaining nearly optimal trade-offs for fundamental problems
in this literature, and succeed in resolving such bounds for problems including oblivious ℓ𝑝 subspace
embeddings, ℓ𝑝 Lewis weight sampling, streaming Löwner–John ellipsoid approximation, active ℓ𝑝 linear
regression, and entrywise low rank approximation.
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1 Introduction

Matrices are one of the most fundamental forms of representing data, and the problem of approximating large
matrices by smaller or simpler matrices, or matrix approximation, is one of the most natural and classical
problems in mathematics and computer science. As data-driven technologies proliferate throughout modern
computer science, large matrices that represent enormous datasets have become some of the most central
objects of study, and developing approximation algorithms for efficiently handling these matrices and datasets
has become one of the most important computational challenges today. Furthermore, this problem has
recently enjoyed a renewed focus in the past decade in the algorithms literature, thanks to the rise of the field
of randomized numerical linear algebra [Mah11, Woo14, MT20]. Since its inception, the field has steadily
matured and succeeded in mapping out the landscape of many of its cornerstone problems, elucidating the
key gaps in our understanding that have yet to be settled. This thesis introduces and develops new techniques
for randomized matrix approximation, with a focus on obtaining tight trade-offs for foundational problems in
this literature.

1.1 Notation

Given positive real numbers 𝑎 > 𝑏 > 0 and 𝑐 > 0, we let 𝑥 ∈ (𝑎± 𝑏)𝑐 denote the statement that (𝑎− 𝑏)𝑐 ≤
𝑥 ≤ (𝑎+ 𝑏)𝑐. For a vector y ∈ R𝑛 and an index 𝑖 ∈ [𝑛], we use the notation y𝑖 and y(𝑖) both to indicate the
𝑖th entry of y. For a matrix A ∈ R𝑛×𝑑 we write a𝑖 to denote the 𝑖th row of A, a𝑗 to denote the 𝑗th column
of A, and A𝑖,𝑗 for the (𝑖, 𝑗)th entry of A. We denote the Moore–Penrose pseudoinverse by A−.

Let 1 ≤ 𝑝 ≤ ∞. For a vector x ∈ R𝑑, we define the ℓ𝑝 norm to be

‖x‖𝑝 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃

𝑑∑︁
𝑖=1

|x𝑖|𝑝
)︃1/𝑝

𝑝 <∞

𝑑
max
𝑖=1
|x𝑖| 𝑝 =∞

For a matrix A ∈ R𝑛×𝑑, we define the entrywise ℓ𝑝 norm to be

‖A‖𝑝,𝑝 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ 𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

|A𝑖,𝑗 |𝑝
⎞⎠1/𝑝

𝑝 <∞

𝑛
max
𝑖=1

𝑑
max
𝑗=1
|A𝑖,𝑗 | 𝑝 =∞

1.2 Problems Studied

In this thesis proposal, we center many of our discussions around two problems that lie at the heart of matrix
approximation, both in theory and in practice: linear regression and low rank approximation.

Subspace Embeddings and Linear Regression. In the linear regression problem, we have an input
design matrix A ∈ R𝑛×𝑑 as well as a label vector b ∈ R𝑛, and we wish to find the “closest” linear combination
Ax of the columns of A to the vector b. The notion of “closest” is most often taken to be the ℓ2 norm, also
known as the least squares loss, and thus the problem we wish to solve is

min
x∈R𝑑
‖Ax− b‖22.

This can be viewed as one of the simplest possible models for supervised learning, and is classically one of the
most widely used prediction models. While far more complex models, especially those based on deep neural
networks and other highly nonconvex models, are growing in popularity, linear regression is still a crucial
building block for these more sophisticated algorithms. Furthermore, linear regression is the preferred choice
as a predictive model itself in resource-limited settings and settings with high levels of noise or uncertainty.
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As we will discuss further in this thesis proposal, the problem of linear regression is closely related to
a notion of matrix approximation known as a subspace embedding, which, roughly speaking, is a way to
approximate a matrix A and a vector b by another matrix A′ = SA and vector b′ = Sb, such that solving
linear regression using A′ and b′ is approximately as good as solving linear regression using A and b. We
will also show that subspace embeddings have applications beyond linear regression, by applying them to
resolve an old problem in computational geometry (Section 2.2.5, [WY22a]).

We will discuss our contributions concerning subspace embeddings and linear regression in Section 2.

Low Rank Approximation. A related problem is low rank approximation, in which we wish to approximate
an input matrix A by the “closest” rank 𝑘 matrix A′. Again, a popular choice for the formalization of
“closest” is the least squares loss, also known as the Frobenius norm, and thus we wish to solve

min
rank(A′)≤𝑘

‖A−A′‖2𝐹 = min
U∈R𝑛×𝑘,V∈R𝑘×𝑑

‖A−UV‖2𝐹 .

Note that low rank approximation is also an important application of linear regression, due to the observation
that low rank approximation can be solved by linear regression if one of the factors U or V are known. Thus,
many algorithms for low rank approximation, including some that we study in this thesis proposal, are based
on “guessing” one of U or V and then solving a linear regression problem.

Low rank approximation serves as one of the simplest models for unsupervised learning, and is widely
used as a preprocessing step for “denoising” a dataset. Furthermore, when U is restricted to be formed
from a small subset of the columns of A, then low rank approximation problem serve as a method of feature
selection [ABF+16].

We will discuss our contributions concerning low rank approximation in Section 3.

The Challenge of Robust and Sensitive Loss Functions. While our discussion so far has focused on
the ℓ2 norm as the loss function of choice, this may not always provide desired results in practice. For instance,
consider the linear regression problem. We may view the least squares loss ‖Ax− b‖22 as an aggregation
of the “fitting errors” ⟨a𝑖,x⟩ − b𝑖 on the 𝑛 indices 𝑖 ∈ [𝑛], in which we take the sum of the squared fitting
errors. However, many other natural choices for ways to aggregate these fitting errors exist. For example,
one could opt for a more “robust” or “average-case” notion of error by taking the loss to be the sum of the
absolute values of the fitting errors, which gives the popular least absolute deviations regression problem, also
known as the ℓ1 linear regression problem, given by

min
x∈R𝑑
‖Ax− b‖1.

Another extreme is to control the largest fitting error among the 𝑛 indices 𝑖 ∈ [𝑛], which gives a more
“sensitive” or “worst-case” notion of error. This problem is known as the ℓ∞ linear regression problem, and is
given by

min
x∈R𝑑
‖Ax− b‖∞.

In general, one can in fact consider a smooth trade-off between these two extremes by considering the ℓ𝑝
linear regression problem, given by

min
x∈R𝑑
‖Ax− b‖𝑝𝑝

for a parameter 1 ≤ 𝑝 ≤ ∞. While the flexibility of tuning the “sensitivity” of the loss function by varying
the parameter 𝑝 has proven to be extremely valuable in practice, handling these loss functions poses numerous
additional challenges for developing algorithms. A large portion of this thesis proposal will be devoted to
developing various techniques which will allow us to overcome these obstructions and extend many known
results for the ℓ2 loss to general ℓ𝑝 losses, and in some cases to even more general loss functions such as
the Huber loss and the Tukey loss (Section 2.2.6, [MMWY22]). We will also develop and apply related
techniques for the low rank approximation problem, where we study a variety of different matrix losses
including entrywise ℓ𝑝 norms (Section 3.1.2, [WY23a]), general entrywise losses (Section 3.1.1, [WY23a]),
cascading norms (Section 3.2, [WY23a]), and the spectral norm (Section 3.3, [WY22b]).
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Streaming Models of Computation. A second focus of this thesis proposal is the development of
algorithms for matrix approximation in streaming models of computation. In many practical settings of
large-scale computation, it is impractical, or even impossible, to assume that the algorithm has access to
the entire input, due to the sheer size of input instances. In such situations, it is more practical to assume
that the algorithm interacts with its input by observing small pieces of the input at a time, which are fed
into the algorithm sequentially. Such computational settings are well-modeled by streaming algorithms. A
typical example is an algorithm which must solve linear regression (or any other empirical risk minimization
problem) over an enormous dataset consisting of billions of training examples, where each individual training
example is small enough to fit in memory, but the entire dataset consisting of all of the training examples
will not. In this case, the typical approach is to sequentially read in the training examples one at a time
from storage, while the algorithm updates its internal state in a small amount of memory. When our input
matrix A arrives one row at a time, as in the previous example, we call this setting the row arrival streaming
setting. We note that streaming models also are often useful for developing algorithms in distributed models
of computation where the input dataset is sharded over multiple computers.

In addition to the row arrival model, we also study a related model of computation, known as the online
model. This setting can be considered to be a restriction of the previous row arrival streaming setting, where
as rows of the matrix A arrive, we need to make certain irrevocable decisions about the rows. In particular,
we will study various forms of online matrix approximation problems, where our algorithm must output a
subset of the rows which forms a good approximation to the input matrix A, but the rows to be included
in the subset must be selected irrevocably at each row arrival 𝑖 ∈ [𝑛]. The study of such online matrix
approximation problems was introduced by [CMP16, CMP20], and we further develop the theory of online
matrix approximation by studying the problems of ℓ∞ subspace embeddings (Section 2.2.5, [WY22a]), ℓ𝑝
subspace embeddings (Section 2.2.1, [WY23b]), and ℓ𝑝 subspace approximation (Section 3.2, [WY23a]).

Finally, we consider a third form of streaming known as the turnstile model of streaming, in which our
matrix A is presented as a stream of additive entrywise updates to the input matrix A. That is, we receive
entrywise updates of the form A𝑖,𝑗 ← A𝑖,𝑗 + ∆ for some real number ∆ ∈ R. This model of streaming
significantly generalizes the row arrival model, and allows for entries of A to be updated and even deleted.
Because the algorithm must support such general updates, the turnstile model of streaming severely restricts
the form of the algorithm, and all known algorithmic approaches take the approach of maintaining linear
sketches, in which the algorithm first chooses a linear map S ∈ R𝑚×𝑛𝑑 and then maintains Svec(A), where
vec(A) ∈ R𝑛𝑑 is the 𝑛𝑑-dimensional vector which represents the entries of A. Note then that Svec(A)
can be updated efficiently under the entrywise updates, using the linearity of S. We will intensively study
approaches to solving matrix approximation problems in the turnstile model of streaming in Section 2.1
[LWY21, WY23a].

2 Subspace Embeddings and Linear Regression

A subspace embedding is a notion of matrix approximation which considers an approximation A′ = SA to be
close to a matrix A if the norms of vectors in the column space of A′ are close to those of A.

Definition 2.1 (Subspace embedding). Let A ∈ R𝑛×𝑑 and S ∈ R𝑟×𝑛. Let 𝜅 ≥ 1 be a distortion parameter
and let ‖·‖ be a norm. Then, S is a 𝜅-approximate subspace embedding if for every x ∈ R𝑑,

‖Ax‖ ≤ ‖SAx‖ ≤ 𝜅‖Ax‖.

One of the most ideal settings for the application of subspace embeddings is for the design of efficient
approximation algorithms for the least squares linear regression problem [DMM06a, Sar06]. Let A ∈ R𝑛×𝑑

be a design matrix and let b ∈ R𝑛 be a label vector, and suppose that we want to efficiently approximate

min
x∈R𝑑
‖Ax− b‖22.

Furthermore, suppose that our matrix A is very tall, that is, 𝑛≫ 𝑑. Then, classically, this problem requires
𝑂(𝑛𝑑2) time to solve. Now suppose that we have an algorithm for efficiently computing a 𝜅-approximate
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subspace embedding S ∈ R𝑟×𝑛 in the ℓ2 norm for the 𝑛× (𝑑+ 1) matrix [A b], that is, A together with b
appended as an additional column. Note then that, for every x ∈ R𝑑,

‖Ax− b‖22 ≤ ‖SAx− Sb‖22 ≤ 𝜅2‖Ax− b‖22, (1)

Now suppose we set

x̂ := arg min
x∈R𝑑
‖SAx− Sb‖22

x* := arg min
x∈R𝑑
‖Ax− b‖22

Then, x̂ is a 𝜅2-approximately optimal solution since

‖Ax̂− b‖22 ≤ ‖SAx̂− Sb‖22 (1)

≤ ‖SAx* − Sb‖22 optimality of x̂

≤ 𝜅2‖Ax* − b‖22 = 𝜅2 min
x∈R𝑑
‖Ax− b‖22 (1)

and furthermore, it can be computed in the time that it takes to compute SA and Sb, plus only 𝑂(𝑟𝑑2)
time. This can potentially be much faster than the original 𝑂(𝑛𝑑2) time, if 𝑟 ≪ 𝑛 and the computation
of SA and Sb is fast. Indeed, this framework has been applied to develop some of the fastest known
algorithms for least squares linear regression, as well as a variety of other related linear algebraic tasks
[DMMW12, CW13, CCKW22, CSWZ23].

Algorithms for computing subspace embeddings generally fall under one of two classes: oblivious subspace
embeddings and non-oblivious subspace embeddings, that is, those that depend on the input matrix A and
those that do not. We obtain results in both classes, and discuss results for oblivious subspace embeddings in
Section 2.1 and non-oblivious subspace embeddings in Section 2.2.

2.1 Oblivious Subspace Embeddings

Consider the problem of computing an ℓ2 subspace embedding for 𝑑 = 1, which simply corresponds to the
problem of finding a norm-preserving linear map for a single vector. This is natural problem is resolved by a
classical result due to Johnson and Lindenstrauss [JL84], which states that given a set 𝑆 ⊆ R𝑛 of 𝑚 vectors
in 𝑛 dimensions, a random linear projection S ∈ R𝑟×𝑛 from 𝑛 dimensions to 𝑟 = 𝑂(𝜀−2 log𝑚) dimensions
has the property that

‖Sy‖2 = (1± 𝜀)‖y‖2
simultaneously for every y ∈ 𝑆, with probability at least 2/3. Thus, the ℓ2 norm of a finite number of vectors
can be preserved up to (1± 𝜀) factors. Furthermore, the matrix S, which is also known as a sketch in this
context, can be taken to be oblivious, i.e., independent of the vectors to which it applies. Thus, for 𝑑 = 1,
oblivious subspace embeddings exist for the ℓ2 norm with distortion 𝜅 = (1 + 𝜀). The fact that the sketch S
can be taken to be oblivious allows it to be used in a wide variety of settings in which non-oblivious subspace
embeddings may not apply, for example in streaming settings and distributed computation.

It may not be immediately clear that the technique of random projections also solves the problem of
computing a subspace embedding for 𝑑 > 1, since this involves preserving the ℓ2 norm of every vector in the
column space of A, which is an infinite number of vectors, rather than a finite number 𝑚. Nevertheless,
the following seminal result of Sarlos [Sar06] shows that random projections in fact do yield ℓ2 subspace
embeddings with distortion (1± 𝜀).

Theorem 2.2 (Sarlos [Sar06]). Let S be an 𝑟 × 𝑛 matrix of i.i.d. Gaussian random variables. There is an
𝑟 = 𝑂(𝜀−2𝑑 log 𝑑) such that for any A ∈ R𝑛×𝑑,

Pr
{︀
for all x ∈ R𝑑, ‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + 𝜀)‖Ax‖2

}︀
≥ 99

100

that is, S is an ℓ2 subspace embedding of A with distortion (1 + 𝜀), with probability at least 99/100.

Since the result of Theorem 2.2, a long line of work has studied further improvements to the development
of oblivious ℓ2 subspace embeddings [Sar06, CW13, NN13, Coh16, CCKW22, CSWZ23].
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2.1.1 High Distortion Embeddings for ℓ𝑝 [WY23a]

Given the result of Theorem 2.2, a natural question to ask is whether similar results exist for ℓ𝑝 norms for
𝑝 ̸= 2. For 𝑑 = 1, the question of whether the ℓ𝑝 norm of a single vector can be preserved given linear
measurements of the vector is well-studied in the streaming literature [SS02, BJKS04, IW05, Ind06], where
for 𝑝 < 2, Θ̃(𝜀−2) measurements is necessary and sufficient for approximation up to a factor of (1 + 𝜀), while
for 𝑝 > 2, the ℓ𝑝 norm cannot be approximated to within a constant factor unless Ω(𝑛1−2/𝑝) measurements
are used. The latter result already prohibits a result of the form of Theorem 2.2 for 𝑝 > 2, if the number of
rows 𝑟 of S must be subpolynomial in 𝑛. Thus, the key question is whether a theorem analogous to Theorem
2.2 is possible for 𝑝 < 2.

One idea is to take inspiration from the proof of Theorem 2.2 as well as the classic streaming algorithm
for ℓ𝑝 norm estimation for vectors by [Ind06]. In Theorem 2.2, the sketch S can be taken to be a matrix with
i.i.d. Gaussian entries [DG03], largely owing to the fact that the Gaussian distribution is 2-stable, that is, if
g ∈ R𝑛 is an i.i.d. Gaussian vector and y ∈ R𝑛 is an arbitrary vector, then ⟨g,y⟩ is distributed as a single
Gaussian random variable, scaled by ‖y‖2. In fact, an analogous result is known for ℓ𝑝 norms for 𝑝 < 2:

Theorem 2.3 (Standard 𝑝-stable distributions [Ind06, Nol20]). For 0 < 𝑝 ≤ 2, there exists a probability
distribution 𝒟𝑝 called the standard 𝑝-stable distribution such that if g ∈ R𝑛 has entries drawn i.i.d. from 𝒟𝑝,
then for any y ∈ R𝑛 ⟨g,y⟩ is distributed as ‖y‖𝑝𝑔, for 𝑔 ∼ 𝒟𝑝.

While Theorem 2.3 takes a step in the right direction, several challenges remain. For 𝑝 < 2, the 𝑝-stable
distributions 𝒟𝑝 are heavy-tailed (unlike the 2-stable Gaussian distribution which enjoys sub-Gaussian tails),
and in order to obtain (1 ± 𝜀)-approximate estimates with high probability, one usually needs to take a
median of independent measurements of |⟨g,y⟩| to approximate ‖y‖𝑝. However, the approximation that we
seek, of the form of Definition 2.1, would take a mean of the measurements, which in turn results in either a
much higher distortion, or a much higher number of rows 𝑟 for the sketch S.

In fact, it turns out that this loss for 𝑝 < 2 is inherent for oblivious ℓ𝑝 subspace embeddings, as shown by
[WW19, WW22]:

Theorem 2.4 (Lower bounds for oblivious ℓ𝑝 subspace embeddings, [WW19, WW22]). Suppose that a
distribution 𝒟 over 𝑟 × 𝑛 matrices S satisfies, for any A ∈ R𝑛×𝑑,

Pr
S∼𝒟

{︁
for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ ‖SAx‖𝑝 ≤ 𝜅‖Ax‖𝑝

}︁
≥ 99

100
.

Then, the distortion 𝜅 is at least

𝜅 = Ω

(︃
1

1
𝑑1/𝑝 log2/𝑝 𝑟 +

(︀
𝑟
𝑛

)︀1/𝑝−1/2

)︃
.

Note that typically, we seek to set 𝑟 = poly(𝑑), which means that the distortion 𝜅 must be at least

𝜅 = Ω

(︂
𝑑1/𝑝

log2/𝑝 𝑑

)︂
= Ω̃(𝑑1/𝑝)

and thus the distortion must be at least polynomial in 𝑑, and (1 + 𝜀)-approximations, or even 𝑂(1)-
approximations, are not possible.

The first known upper bounds for ℓ𝑝 subspace embeddings for 𝑝 < 2 were obtained by [SW11], who

obtained a construction for 𝑟 = �̃�(𝑑) rows and distortion 𝜅 = �̃�(𝑑) for the case of 𝑝 = 1. In fact, their
sketch S is just constructed analogously to Theorem 2.2 with the 2-stable Gaussian distribution replaced by
the 1-stable Cauchy distribution. That is, S is just an appropriate scaling of the 𝑟 × 𝑛 matrix where each
entry is drawn independently from the standard 1-stable distribution, also known as the Cauchy distribution.
Note that this result achieves a nearly optimal trade-off distortion for any 𝑟 = poly(𝑑) rows by the lower
bound of Theorem 2.4. While a dense Cauchy matrix is not as ideal to apply quickly, faster variants of this
construction have been developed in subsequent works [MM13, WZ13, CDM+16, WW19, WW22].

With the trade-offs for oblivious ℓ1 subspace embeddings being settled, the next natural question is to
settle the analogous problem for 1 < 𝑝 < 2.
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Question 2.5 ([WW19, WW22]). Do there exist oblivious ℓ𝑝 subspace embeddings that achieves the guarantee

of Definition 2.1 for the ℓ𝑝 norm with 𝜅 = �̃�(𝑑1/𝑝) and 𝑟 = poly(𝑑)?

In fact, for a long time, the above question was thought to be resolved, and many papers claimed
constructions of oblivious ℓ𝑝 subspace embeddings achieving a distortion of 𝜅 = �̃�(𝑑1/𝑝) [MM13, WZ13,
WW19]. Unfortunately, all of these results relied on the existence of a certain well-conditioned basis, whose
proof contained an error, and the revised proofs only achieves constructions with a distortion of 𝜅 = �̃�(𝑑)
[WW22] for any 𝑝 ∈ (1, 2). Thus, the resolution of Question 2.5 became a central open question in the study
of randomized matrix approximation [WW22].

In the work [WY23a], we give a positive resolution to Question 2.5:

Theorem 2.6 (Nearly optimal oblivious ℓ𝑝 subspace embeddings [WY23a]). Let S be an 𝑟 × 𝑛 matrix of

i.i.d. 𝑝-stable random variables. There is an 𝑟 = �̃�(𝑑) such that for any A ∈ R𝑛×𝑑,

Pr
{︁
for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ ‖SAx‖𝑝 ≤ �̃�(𝑑1/𝑝)‖Ax‖𝑝

}︁
≥ 99

100

that is, S is an ℓ𝑝 subspace embedding of A with distortion 𝜅 = �̃�(𝑑1/𝑝), with probability at least 99/100.

As alluded to previously, our approach is to tackle the problem of the existence of a well-conditioned
basis, which we discuss next. For the ℓ2 norm, every subspace admits an orthogonal basis, which is a basis
for the subspace which exactly preserves the ℓ2 norm. That is, for any matrix A ∈ R𝑛×𝑑, there exists a
matrix U ∈ R𝑛×𝑑 such that for any x ∈ R𝑑, there exists x′ ∈ R𝑑 such that Ax = Ux′, and furthermore,
‖Ux‖2 = ‖x‖2 for every x ∈ R𝑑. The existence of orthogonal bases plays a key role in the analyses of
oblivious ℓ2 subspace embeddings. However, it is easy to see that for 𝑝 ̸= 2, exact analogues of orthogonal
bases do not exist, and thus we must settle for an appropriately relaxed notion of “orthogonal bases”. One
way to meaningfully define such an analogue was introduced by [DDH+09], based on a similar definition by
[Cla05]:

Definition 2.7 ((𝛼, 𝛽, 𝑝)-well-conditioned basis, Definition 3, [DDH+09]). Let A ∈ R𝑛×𝑑 be rank 𝑑 matrix,
let 𝑝 ≥ 1, and let 𝑞 = 𝑝/(𝑝 − 1) be the Hölder dual of 𝑝. Then, U ∈ R𝑛×𝑑 is an (𝛼, 𝛽, 𝑝)-well-conditioned
basis if (1) ‖U‖𝑝,𝑝 ≤ 𝛼 and (2) for any z ∈ R𝑑, ‖z‖𝑞 ≤ 𝛽‖Uz‖𝑝.

Note that for ℓ2, an orthogonal basis U corresponds to an (𝛼, 𝛽, 2)-well-conditioned basis with parameters
𝛼 = 𝑑1/2 and 𝛽 = 1. For ℓ1, [SW11] showed that the well-known construction of Auerbach bases [Aue30]
from the geometric functional analysis literature corresponds to an (𝛼, 𝛽, 1)-well-conditioned basis with 𝛼 = 𝑑
and 𝛽 = 1. For 𝑝 ∈ (1, 2), however, the works of [MM13, WZ13, WW19], it was mistakenly claimed that
Auerbach bases also give (𝛼, 𝛽, 𝑝)-well-conditioned bases for 𝛼 = 𝑑1/𝑝 and 𝛽 = 1, while they in fact only give
𝛼 = 𝑑 and 𝛽 = 1.

While our techniques in [WY23a] do not give a construction for (𝑑1/𝑝, 1, 𝑝)-well-conditioned basis, we in
fact show that by relaxing the notion of well-conditioned bases to well-conditioned spanning sets, we can
obtain a construction that is sufficient to prove Theorem 2.6. More specifically, we show the following:

Theorem 2.8 ((𝛼, 𝛽, 𝑝)-well-conditioned spanning set, [WY23a]). Let A ∈ R𝑛×𝑑, let 𝑝 ≥ 1, and let 𝑞 be the
Hölder dual of 𝑝. Then, there exists U ∈ R𝑛×𝑠 for 𝑠 = 𝑂(𝑑 log log 𝑑) such that (1) ‖U‖𝑝,𝑝 ≤ 𝑠1/𝑝 and (2) for

any x ∈ R𝑑, there exists z ∈ R𝑠 such that Ax = Uz and ‖z‖2 ≤ 𝑂(1)‖Uz‖𝑝.

That is, we show that by relaxing the use of a basis, which is only allowed to contain 𝑑 vectors, to a
spanning set consisting of just 𝑂(𝑑 log log 𝑑) vectors, we can obtain a spanning set which has properties
which just as good as a (�̃�(𝑑1/𝑝), 𝑂(1), 𝑝)-well-conditioned basis (and in fact, better in some aspects). Our
construction of the well-conditioned spanning set is in fact nothing more than a coreset for John ellipsoids
[Tod16], which are a subset of 𝑠 = 𝑂(𝑑 log log 𝑑) vectors which approximate the minimum volume enclosing
ellipsoid of a given set of vectors.

2.1.2 Low Distortion Embeddings for ℓ1 [LWY21]

In Section 2.1.1, we studied algorithms for oblivious ℓ𝑝 subspace embeddings with distortion 𝜅 on the
order of poly(𝑑), as the lower bound of Theorem 2.4 prohibited a construction with smaller distortion, if
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we insist on 𝑟 = poly(𝑑). However, if we are allowed to make 𝑟 as large as exp(poly(𝑑)), then the lower
bound of Theorem 2.4 no longer gives a lower bound, and we can hope for a distortion of 𝜅 = (1 + 𝜀).
Indeed, [WW19, WW22] studied the question of whether (1 + 𝜀) approximations are possible if we allow for
superpolynomial dependencies on 𝑑, and showed that if 𝑟 = exp(exp(poly(𝑑))), that is, doubly exponential in
𝑑, then a dense Cauchy embedding (similarly to that used in [SW11]) admits oblivious ℓ1 subspace embeddings
with (1 + 𝜀) distortion. However, this leads to an exponential gap in the bound on 𝑟. A natural question is to
resolve this gap:

Question 2.9 ([WW19, WW22]). Do there exist oblivious ℓ𝑝 subspace embeddings that achieves the guarantee
of Definition 2.1 for the ℓ𝑝 norm with 𝜅 = (1 + 𝜀) and 𝑟 = exp(poly(𝑑, 𝜀−1))?

In [LWY21], we study Question 2.9 and answer it affirmatively for 𝑝 = 1 with the following theorem:

Theorem 2.10 ((1 + 𝜀) oblivious ℓ1 subspace embeddings [LWY21]). There exists a distribution over 𝑟 × 𝑛
matrices S for 𝑟 = exp(�̃�(𝑑/𝜀)) such that for any A ∈ R𝑛×𝑑,

Pr
{︀
for all x ∈ R𝑑, ‖Ax‖1 ≤ ‖SAx‖1 ≤ (1 + 𝜀)‖Ax‖1

}︀
≥ 99

100

that is, S is an ℓ1 subspace embedding of A with distortion 𝜅 = (1 + 𝜀), with probability at least 99/100.

Our sketch S for proving Theorem 2.10 requires a number of novel ideas. Instead of using the typical
approach for oblivious ℓ1 subspace embeddings based on Cauchy sketches [SW11, WW19, WW22], we instead
start with the 𝑀 -sketch of [CW15a], which is based on the classical techniques of hashing and subsampling
from the streaming literature [IW05]. In the 𝑀 -sketch, the sketching matrix S is taken to be a map which
samples rows at a wide range of sampling probabilities, and then hashes the sampled rows into a smaller
number of rows. In our application for (1 + 𝜀) oblivious ℓ1 subspace embeddings, it turns out that for any
fixing of sampling probabilities 𝑝 that we use, there is a hard instance vector such that its ℓ1 mass is spread
out over Θ(1/𝑝) coordinates such that anti-concentration in the sampling process will cause our estimate
of the ℓ1 mass to be off by a (1 + Ω(1)) factor. To overcome this problem, we show how to randomize the
choice of the sampling probabilities themselves so that we can avoid this worst-case scenario. While this idea
is sufficient for preserving the ℓ1 norm for one vector, we in fact need additional ideas in order to handle
the entire subspace spanned by the columns of A, which can increase 𝑟 to be doubly exponential if done
via a naive net argument. Instead, we show that in our setting, we can apply our single-vector analysis to
the vector of ℓ1 sensitivities (see Section 2.2.2), which implies norm preservation guarantee for the entire
subspace via a novel argument.

Our techniques developed in this work have been further developed in [MOW23] to design streaming
algorithms for logistic regression and ℓ1 regression.

2.1.3 Future Directions for Oblivious ℓ𝑝 Subspace Embeddings

While we have been able to resolve many of the outstanding gaps in our understanding of oblivious ℓ𝑝
subspace embeddings, many interesting questions still remain to be explored. Perhaps one of the most
notable unresolved challenges is to resolve the dependence on the accuracy parameter 𝜀 for (1 + 𝜀) oblivious
ℓ𝑝 subspace embeddings. Our upper bounds in [LWY21] have a singly exponential dependence on 1/𝜀, while
there is no known lower bound which rules out an upper bound of the form 𝑟 = exp(poly(𝑑))/ poly(𝜀). We
conjecture that our upper bound is tight, and ask whether one can show an exponential lower bound in 𝜀,
even for 𝑑 = 𝑂(1).

Question 2.11. Is there an exp(poly(1/𝜀)) lower bound on 𝑟 for (1 + 𝜀) oblivious ℓ𝑝 subspace embeddings
for 𝑑 = 𝑂(1)?

2.2 Non-Oblivious Subspace Embeddings

In this section, we discuss our results on non-oblivious subspace embeddings. Unlike the results for oblivious
subspace embeddings (Section 2.1), non-oblivious subspace embeddings can be constructed as a function of
the input matrix A, and thus admit subspace embeddings with much smaller distortion 𝜅 and number of
rows 𝑟.
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An important approach in the construction of non-oblivious subspace embeddings is sampling, where each
of the 𝑟 rows of the sketch S selects and scales just one row of A. A prime example of this is the work of
[DMM06a], which takes such a sampling approach to obtain one of the first randomized algorithms for linear
regression via ℓ2 subspace embeddings. In this work, the authors consider the leverage scores of the input
matrix A, which measures the importance of each of the 𝑛 rows of A.

Definition 2.12 (Leverage scores). Let A ∈ R𝑛×𝑑. Then for each 𝑖 ∈ [𝑛], the 𝑖th leverage score of A is
defined to be

𝜏 𝑖(A) := sup
Ax ̸=0

[Ax](𝑖)2

‖Ax‖22
= a⊤𝑖 (A

⊤A)−a𝑖,

where a𝑖 = e⊤𝑖 A is the 𝑖th row of A.

A series of works have culminated in the following guarantee for leverage score sampling.

Theorem 2.13 (Leverage score sampling [DMM06a, RV07]). Let A ∈ R𝑛×𝑑. Let 𝛼 > 0 and let 𝑝𝑖 =
min{1, 𝜏 𝑖(A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal matrix formed by independently setting

S𝑖,𝑖 =

⎧⎨⎩
1
√
𝑝
𝑖

with probability 𝑝𝑖

0 with probability 1− 𝑝𝑖

for each 𝑖 ∈ [𝑛]. Then, with probability at least 99/100, there is an 𝛼 such that S is an ℓ2 subspace embedding
satisfying Definition 2.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most 𝑟 = 𝑂(𝜀−2𝑑 log 𝑑) nonzero rows.

Algorithms for ℓ2 subspace embeddings using leverage score sampling have subsequently been improved in
[SS11, DMMW12, LMP13, CLM+15].

2.2.1 Lewis Weight Sampling and ℓ𝑝 Subspace Embeddings [WY23b]

Given the result of Theorem 2.13, the next natural question, in a similar line of inquiry as Section 2.1.1, is
whether analogous results can be obtained for the ℓ𝑝 norm or not.

Sampling algorithms for ℓ𝑝 subspace embeddings. One possible generalization of leverage scores to
the ℓ𝑝 setting comes from the observation that the leverage scores can be characterized as the row norms of
any orthogonal basis of A. That is, if U ∈ R𝑛×𝑑 is an orthogonal basis of A ∈ R𝑛×𝑑, then it is not hard to
see that

𝜏 𝑖(A) =
⃦⃦
e⊤𝑖 U

⃦⃦2
2

for every 𝑖 ∈ [𝑛]. We can then recall constructions of well-conditioned bases U for subspaces of ℓ𝑝 (Definition
2.7) and define analogous scores that are proportional to

⃦⃦
e⊤𝑖 U

⃦⃦𝑝
𝑝
. Indeed, such approaches were considered

and used to obtain ℓ𝑝 subspace embeddings with 𝑟 = poly(𝑑/𝜀) rows and 𝜅 = (1 + 𝜀) distortion [DDH+09]:

Theorem 2.14 (ℓ𝑝 leverage score sampling [Cla05, DDH+09]). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 <∞. Let U ∈ R𝑛×𝑑

be a (poly(𝑑), 1, 𝑝)-well-conditioned basis for the column space of A (see Definition 2.7). Let 𝛼 > 0 and let
𝑝𝑖 = min{1, ‖e⊤𝑖 U‖𝑝𝑝/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal matrix formed by independently setting

S𝑖,𝑖 =

⎧⎪⎨⎪⎩
1

𝑝
1/𝑝
𝑖

with probability 𝑝𝑖

0 with probability 1− 𝑝𝑖

for each 𝑖 ∈ [𝑛]. Then, with probability at least 99/100, there is an 𝛼 such that S is an ℓ𝑝 subspace embedding
satisfying Definition 2.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most 𝑟 = poly(𝑑/𝜀) nonzero rows.

Note that this result already separates oblivious ℓ𝑝 subspace embeddings from non-oblivious ℓ𝑝 subspace
embeddings for 𝑝 ≠ 2 due to the lower bound of Theorem 2.4, which is perhaps surprising given that this
separation does not exist for 𝑝 = 2, where oblivious subspace embeddings can match the row and distortion
trade-off of the best non-oblivious subspace embeddings. In fact, it turns out that one can hope for even
better than Theorem 2.14, using the technique of Lewis weight sampling.
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Lewis weight sampling. The work of [CP15] observed that the problem of constructing ℓ𝑝 subspace
embeddings of the form of Definition 2.1 has actually been studied decades ago in the geometric functional
analysis literature, and obtains nearly optimal trade-offs between the number of rows 𝑟 and the accuracy
parameter 𝜀. Indeed, a series of works [Lew78, BLM89, LT91, SZ01] culminated in the following result:

Theorem 2.15 (ℓ𝑝 subspace embeddings, existential version [Lew78, BLM89, LT91, SZ01]). Let A ∈ R𝑛×𝑑

and 0 < 𝑝 <∞. Then, there exists an ℓ𝑝 subspace embedding S ∈ R𝑟×𝑛 with distortion 𝜅 = (1 + 𝜀) with

𝑟 =

{︃
𝑂(𝜀−2𝑑(log 𝑑)2 log(𝑑/𝜀)) 0 < 𝑝 < 2

𝑂(𝜀−2𝑑𝑝/2(log 𝑑)2 log(𝑑/𝜀)) 2 < 𝑝 <∞

We note that the statement of Theorem 2.15 is slightly suboptimal in the logarithmic factors compared
to the best known results [Tal90, Tal95, Zva00], but we present this version as it uses a simpler proof that
we work extensively with, while achieving the best known dependencies on 𝑑 and 𝜀, up to polylogarithmic
factors.

It has recently been shown that the upper bound of Theorem 2.15 is nearly optimal for 𝑝 < 2, while for
𝑝 > 2, the dependence on 𝜀 and 𝑑 are individually optimal [LWW21, LLW23] when 𝑑 = Ω(log(1/𝜀)). In fact,
the lower bound of [LWW21] applies to any data structures which has the same guarantee as an ℓ𝑝 subspace
embedding:

Theorem 2.16. Let 𝑝 ∈ [1,∞) ∖ 2Z. Suppose that 𝒜 is any randomized algorithm which processes any matrix
A ∈ R𝑛×𝑑 into a data structure 𝒬 which supports queries x ∈ R𝑑 and outputs an estimate 𝒬(x) such that

‖Ax‖𝑝 ≤ 𝒬(x) ≤ (1 + 𝜀)‖Ax‖𝑝.

Then, 𝒬 requires Ω̃(𝑑2/𝜀2) bits of space. Furthermore, for 𝑝 > 2, 𝒬 requires Ω̃(𝜀−1𝑑𝑝/2) bits of space.

The proof of Theorem 2.15 is almost algorithmic, as the proof is based on the probabilistic method; the
only component which is not algorithmic is the construction of a certain set of weights known as the Lewis
weights [Lew78], which can be viewed as a certain generalization of the leverage scores (Definition 2.12) for
ℓ𝑝 that differs from the ℓ𝑝 leverage scores considered by [Cla05, DDH+09] in Theorem 2.14.

Definition 2.17 (ℓ𝑝 Lewis weights [Lew78, CP15]). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 < ∞. Then, the ℓ𝑝 Lewis
weights of A are the unique set of weights w ∈ R𝑛

≥0 such that for every 𝑖 ∈ [𝑛],

w𝑖 = 𝜏 𝑖(W
1/2−1/𝑝A),

where W = diag(w). We will denote the ℓ𝑝 Lewis weights of A as w𝑝
𝑖 (A) for 𝑖 ∈ [𝑛].

The work of Cohen and Peng [CP15] addresses the problem of the algorithmic computation of Lewis
weights by showing that Lewis weights can, in fact, be approximated efficiently, and even in nearly input
sparsity time for 𝑝 ∈ (0, 4). Follow-up works have further refined algorithms for approximating Lewis weights
[Lee16, CCLY19, FLPS22, JLS22], and Lewis weights can now be approximated in nearly input sparsity time
for all 𝑝 > 0 [JLS22].

While the works above address the question of approximating Lewis weights, using the Lewis weights to
sample ℓ𝑝 subspace embeddings is an orthogonal direction of investigation. By an appropriate adaptation of
the earlier work in geometric functional analysis [BLM89, LT91, SZ01], as well as the construction of ℓ𝑝 Lewis
weights due to [CP15], one can obtain algorithmic constructions of ℓ𝑝 subspace embeddings which match the
guarantees of Theorem 2.15 [MMWY22]. However, this construction has the drawback that the sampling
algorithm requires a sophisticated recursive structure in which the number of rows are reduced by half for
𝑂(log 𝑛) recursive rounds of sampling. This hinders the use of Lewis weight sampling in one-pass streaming
settings [WY23b], and demonstrates a gap from algorithms for ℓ2 leverage score sampling, which admits
ℓ2 subspace embeddings just by sampling proportionally to the leverage scores in a “one-shot” sampling
algorithm [DMM06a, RV07], as well as streaming variants [CMP16, CMP20]. Indeed, the work of [CP15]
studies the problem of obtaining ℓ𝑝 subspace embeddings via sampling algorithms that simply sample rows
proportionally to the Lewis weights in a “one-shot” manner analogous to leverage score sampling as in
Theorem 2.13, rather than using a recursive sampling algorithm. In fact, such results are possible, and [CP15]
obtain the following result:
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Theorem 2.18 (ℓ𝑝 Lewis weight sampling [CP15]). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let 𝛼 > 0 and let
𝑝𝑖 = min{1,w𝑝

𝑖 (A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal matrix formed by independently setting

S𝑖,𝑖 =

⎧⎪⎨⎪⎩
1

𝑝
1/𝑝
𝑖

with probability 𝑝𝑖

0 with probability 1− 𝑝𝑖

for each 𝑖 ∈ [𝑛]. Then, with probability at least 99/100, there is an 𝛼 such that S is an ℓ𝑝 subspace embedding
satisfying Definition 2.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most 𝑟 nonzero rows, for

𝑟 =

⎧⎪⎨⎪⎩
𝑂(𝜀−2𝑑 log(𝑑/𝜀)) 𝑝 = 1

𝑂(𝜀−2𝑑 log(𝑑/𝜀) log log(𝑑/𝜀)) 1 < 𝑝 < 2

𝑂(𝜀−5𝑑𝑝/2(log 𝑑) log(1/𝜀)) 2 < 𝑝 <∞

However, a notable gap exists between the algorithmic results of Theorem 2.18 based on “one-shot”
sampling versus the existential results of Theorem 2.15 for 𝑝 > 2 and its algorithmic version based on recursive
sampling, where Theorem 2.15 achieves a quadratic dependence on 𝜀, while Theorem 2.18 incurs a dependence
of 𝜀5. An important question in the study of ℓ𝑝 Lewis weight sampling is whether this gap can be closed:

Question 2.19. For 𝑝 > 2, can the guarantee of one-shot ℓ𝑝 Lewis weight sampling in Theorem 2.18 be

improved to �̃�(𝜀−2𝑑𝑝/2)?

One of the main results we obtain in [WY23b] is a positive resolution to Question 2.19:

Theorem 2.20 (ℓ𝑝 Lewis weight sampling, improved [WY23b]). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 < ∞. Then,
Theorem 2.18 holds with

𝑟 = 𝑂(𝜀−2𝑑𝑝/2(log 𝑑)2 log(𝑑/𝜀)).

In the work of [CP15], one of the major obstructions towards achieving a result like Theorem 2.20 is the
lack of important structural properties of Lewis weights which hold for 𝑝 ≤ 2 but not for 𝑝 > 2. In particular,
for 𝑝 ≤ 2 ℓ𝑝 Lewis weights satisfy monotonicity with respect to row additions:

Lemma 2.21 (Monotonicity of ℓ𝑝 Lewis Weights, Lemma 5.5, [CP15]). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 ≤ 2. Let
𝑚 ≥ 𝑛 and let A′ ∈ R𝑚×𝑑 be a matrix such that e⊤𝑖 A = e⊤𝑖 A

′ for all 𝑖 ∈ [𝑛], that is, A′ is obtained by adding
rows to A. Then,

w𝑝
𝑖 (A) ≥ w𝑝

𝑖 (A
′)

for every 𝑖 ∈ [𝑛].

This property is crucial in a reduction argument used by [CP15], which reduces the problem of proving
guarantees for one-shot Lewis weight sampling to the problem of proving guarantees for uniform sampling
of a different matrix. However, the monotonicity property of Lemma 2.21 fails to hold for 𝑝 > 2, which
obstructs the use of this reduction. Instead, the result for 𝑝 > 2 in Theorem 2.18 is obtained by a chaining
argument due to [BLM89], which directly analyzes the one-shot Lewis weight sampling algorithm but has a
looser dependence on 𝜀.

In [WY23b], we show how to directly circumvent the issue of non-monotonicity in the reduction argument
used by [CP15]. The starting point of our idea is to first observe that in many cases, Lewis weights can be
replaced by a substantially weakened version of Lewis weights that only satisfies a “one-sided” guarantee,
which were introduced in [JLS22, WY22a]:

Definition 2.22 (One-sided ℓ𝑝 Lewis weights). Let A ∈ R𝑛×𝑑 and 0 < 𝑝 <∞. Let 𝛼 > 0. Then, w ∈ R𝑛
≥0

are 𝛼-approximate one-sided ℓ𝑝 Lewis weights if

w𝑖 ≥ 𝛼 · 𝜏 𝑖(W
1/2−1/𝑝A),

where W = diag(w).
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We show in [WY23b] that relaxed ℓ𝑝 Lewis weights of the form of Definition 2.22 still satisfy similar
sampling guarantees as those studied [BLM89, LT91, SZ01]. It turns out that when we allow for a relaxation
of the ℓ𝑝 Lewis weights as in Definition 2.22, then we can define a version of ℓ𝑝 Lewis weights with respect to
another matrix, which is analogous to a notion studied for leverage scores in [CLM+15].

Lemma 2.23 (Lemma 4.6, [WY23b]). Let A ∈ R𝑛×𝑑 and 2 ≤ 𝑝 < ∞. Let M ∈ R𝑑×𝑑 be a symmetric
positive semidefinite matrix. Then, there exist weights w ∈ R𝑛

≥0 such that for 𝑖 ∈ [𝑛],

w𝑖 =
(︁𝑝
2

)︁ 𝑝/2
1−2/𝑝

(︁
a⊤𝑖 (A

⊤W1−2/𝑝A+M)−a𝑖

)︁2/𝑝
and

𝑛∑︁
𝑖=1

w𝑖 ≤
(︁𝑝
2

)︁ 1
1−2/𝑝

𝑑.

Lemma 2.23 can also be viewed as a version of batch online Lewis weights, where we initially have a matrix
B as well as Lewis weights for them, and then receive a new batch of rows A which we must append, and
still define a notion of ℓ𝑝 Lewis weights that is “consistent” for the entire matrix obtained by concatenating
B with A. This perspective reveals how Lemma 2.23 is useful for proving Theorem 2.20: it allows us to
circumvent non-monotonicity of exact ℓ𝑝 Lewis weights, and “extend” ℓ𝑝 Lewis weights of a matrix after a
batch of row additions! Indeed, this is the central idea of the proof of Theorem 2.20.

Our ideas here also lead to the first online ℓ𝑝 subspace embeddings which achieve guarantees which nearly
match those of Theorems 2.18 and 2.20, in the setting where the rows a𝑖 of A must be sampled as they arrive
one by one in a stream, and cannot be accessed again if a row is not chosen to be sampled. This provides a
generalization of the results of [CMP16, CMP20] for ℓ2 subspace embeddings to ℓ𝑝 subspace embeddings,
and answers open questions of [BDM+20] and [CLS22].

2.2.2 Sensitivity Sampling [WY23c]

So far, we have discussed two possible generalizations of leverage score sampling: one based on using well-
conditioned bases (Theorem 2.14), and one based on Lewis weights (Theorems 2.18 and 2.20). In fact, there
is another natural candidate, known as ℓ𝑝 sensitivities, which we study in this section.

The sensitivity sampling framework was introduced by [LS10, FL11] and further optimized by [BFL16,
FSS20] in order to develop a unified approach to sampling-based approximation algorithms for a wide range
of problems including clustering, projective clustering, low rank approximation and subspace approximation,
empirical risk minimization, and others. In this general framework, we seek to approximate an objective
function 𝑓 : 𝑋 → R≥0 of the form of a sum

𝑓(x) :=

𝑛∑︁
𝑖=1

𝑓𝑖(x)

by sampling a subset 𝑆 ⊆ [𝑛] as well as associated weights w𝑖 for 𝑖 ∈ 𝑆, so that

𝑓(x) = (1± 𝜀)
∑︁
𝑖∈𝑆

w𝑖𝑓(x) (2)

simultaneously for every x ∈ 𝑋. Note that if we set 𝑋 = R𝑑 and 𝑓𝑖(x) = |⟨a𝑖,x⟩|𝑝 for each 𝑖 ∈ [𝑛], then
this corresponds to the problem of sampling an ℓ𝑝 subspace embedding. To sample our approximation, we
consider the sensitivity scores 𝜎𝑖, and sample functions 𝑓𝑖 with probabilities 𝑝𝑖 proportional to 𝜎𝑖 with
weights w𝑖 = 1/𝑝𝑖.

Definition 2.24 (Sensitivity score [LS10, FL11]). For 𝑖 ∈ [𝑛], let 𝑓𝑖 : 𝑋 → R≥0 be functions. Then, the 𝑖th
sensitivity score is defined as

𝜎𝑖 := sup
x∈𝑋

𝑓𝑖(x)∑︀𝑛
𝑗=1 𝑓𝑗(x)

and the total sensitivity is defined as S :=
∑︀𝑛

𝑖=1 𝜎𝑖.
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In a wide variety of applications, it can be shown that sampling 𝑟 = �̃�(𝜀−2S𝑑) functions 𝑓𝑖 is sufficient
to achieve the guarantee of (2), where 𝑑 is the VC-dimension of a certain set system associated with the
functions {𝑓𝑖}𝑛𝑖=1 [LS10, FL11, BFL16, FSS20].

In this section, we study sensitivity sampling when specialized to the seting of ℓ𝑝 subspace embeddings,
and introduce the following definition:

Definition 2.25 (ℓ𝑝 sensitivities). Let A ∈ R𝑛×𝑑 and 𝑝 ≥ 1. Then, for each 𝑖 ∈ [𝑛], we define the 𝑖th ℓ𝑝
sensitivity to be

𝜎𝑝
𝑖 (A) := sup

x∈R𝑑,Ax ̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
and the total ℓ𝑝 sensitivity to be S𝑝(A) :=

∑︀𝑛
𝑖=1 𝜎

𝑝
𝑖 (A).

In this setting, the VC-dimension parameter 𝑑 from the sensitivity sampling framework is equal to the
dimension 𝑑 of subspace spanned by the columns of A, up to constant factors. Furthermore, it can be
shown that the total ℓ𝑝 sensitivity S𝑝(A) is at most 𝑑 for 𝑝 < 2 and at most 𝑑𝑝/2 for 𝑝 > 2 [WY22a]. Thus,
sensitivity sampling immediately applies in this setting, and has been indeed used in the past to obtain ℓ𝑝
subspace embeddings in settings Lewis weight sampling may not immediately apply [BDM+20, BHM+21].

Remark 2.26. The calculation of ℓ𝑝 sensitivities can be formulated as an ℓ𝑝 regression problem, and can be
computed efficiently using recent developments in algorithms for ℓ𝑝 regression. Indeed, it is easy to see that

1

𝜎𝑝
𝑖 (A)

= min
[Ax](𝑖)=1

‖Ax‖𝑝𝑝,

which can be efficiently approximated to high precision in nearly matrix multiplication time [AKPS19, APS19,
AS20].

Note that for 𝑝 = 2, the ℓ𝑝 sensitivities are exactly equal to the leverage scores (Definition 2.12). This
means that the ℓ2 sensitivities always have a total sensitivity of S2(A) = 𝑑, and the general sensitivity
sampling bound of �̃�(𝜀−2S𝑑) = �̃�(𝜀−2𝑑2) is quadratically worse than the nearly optimal guarantee of leverage
score sampling of Theorem 2.13. However, for 𝑝 > 2, ℓ𝑝 sensitivity sampling in fact has the potential to
produce a smaller number of rows than ℓ𝑝 Lewis weight sampling, if the total sensitivity S𝑝(A) is small.
Indeed, S𝑝(A) can be as small as 𝑑 even for 𝑝 > 2, in which case one can obtain a sample complexity of
�̃�(𝜀−2S𝑑) = �̃�(𝜀−2𝑑2) for such matrices, while Lewis weight sampling would require �̃�(𝜀−2𝑑𝑝/2), which is
much worse for 𝑝 > 4. Thus, despite the fact that Lewis weight sampling already achieves nearly optimal
bounds in the worst case (see Section 2.2.1), the study of sensitivity sampling using the scores of Definition
2.25 is still interesting for two reasons:

1. The definition of sensitivities can be massively generalized to a wide variety of sampling-based approxi-
mation problems.

2. For 𝑝 > 2, sensitivity sampling admits matrix-dependent bounds which can circumvent the lower bounds
of Theorem 2.16.

For these reasons, our work in [WY23c] studies the problem of obtaining the tightest possible bounds for
ℓ𝑝 sensitivity sampling:

Question 2.27. What is the smallest sample complexity possible for the ℓ𝑝 sensitivity sampling algorithm?

While we are not able to complete resolve Question 2.27, we make progress towards this by giving an
analysis of ℓ𝑝 sensitivity sampling which goes beyond the general case bound of �̃�(𝜀−2S𝑑):

Theorem 2.28 (ℓ𝑝 sensitivity sampling [WY23c]). Let 1 ≤ 𝑝 < ∞ and let A ∈ R𝑛×𝑑. Let 𝛼 > 0 and let
𝑝𝑖 = min{1, 1/𝑛+𝜎𝑝

𝑖 (A)/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal matrix formed by independently setting

S𝑖,𝑖 =

⎧⎪⎨⎪⎩
1

𝑝
1/𝑝
𝑖

with probability 𝑝𝑖

0 with probability 1− 𝑝𝑖
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for each 𝑖 ∈ [𝑛]. Then, with probability at least 99/100, there is an 𝛼 such that S is an ℓ𝑝 subspace embedding
satisfying Definition 2.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most 𝑟 nonzero rows, for

𝑟 =

{︃
𝜀−2S𝑝(A)2/𝑝 poly log 𝑛 1 ≤ 𝑝 < 2

𝜀−2S𝑝(A)2−2/𝑝 poly log 𝑛 2 < 𝑝 <∞

In fact, our improved analysis of ℓ𝑝 sensitivity sampling is largely based off of the analysis of ℓ𝑝 Lewis
weight sampling in the works of [BLM89, LT91]. One of the key aspects of the analysis of Lewis weight
sampling in these works is the use of a sophisticated chaining argument to replace a simpler net argument.
When Lewis weights are used as sampling probabilities, then such a chaining argument goes through due to
the fact that the resulting matrix has uniformly bounded leverage scores, which in turn is a consequence of
the specific definition of Lewis weights. However, when we instead use the ℓ𝑝 sensitivities, we no longer have
this property, and the analysis needs to be modified.

To address this problem, we observe that although ℓ𝑝 sensitivity sampling does not directly lead to
uniformly bounded leverage scores, it does lead to uniformly bounded ℓ𝑝 sensitivities in the resulting matrix.
We then show that this in turn implies approximately uniformly bounded leverage scores, by relating the ℓ𝑝
sensitivities to the leverage scores. Upon making this observation, Theorem 2.28 follows by relatively natural
modifications to the arguments of [BLM89, LT91] as well as [CP15].

In fact, our techniques and observations used to obtain Theorem 2.28 lead to improved guarantees for yet
another generalization of ℓ2 leverage score sampling, known as root leverage score sampling. In root leverage
score sampling, the sampling probabilities are taken to be proportional to the square root of the ℓ2 leverage
scores, and have found applications as upper bounds to sensitivities for more general loss functions with
less structure than the ℓ𝑝 losses, including the Huber loss and the logistic loss [CW15a, MSSW18, GPV21].
When specialized to ℓ𝑝 subspace embeddings, we obtain the following result by an appropriate modification
of our earlier arguments:

Theorem 2.29 (Root leverage score sampling [WY23c]). Let 1 ≤ 𝑝 < 2 and let A ∈ R𝑛×𝑑. Let 𝛼 > 0 and let
𝑝𝑖 = min{1, 𝜏 𝑝

𝑖 (A)𝑝/2/𝛼} for 𝑖 ∈ [𝑛]. Let S ∈ R𝑛×𝑛 be the diagonal matrix formed by independently setting

S𝑖,𝑖 =

⎧⎪⎨⎪⎩
1

𝑝
1/𝑝
𝑖

with probability 𝑝𝑖

0 with probability 1− 𝑝𝑖

for each 𝑖 ∈ [𝑛]. Then, with probability at least 1− 1/poly(𝑛), there is an 𝛼 such that S is an ℓ𝑝 subspace
embedding satisfying Definition 2.1 with 𝜅 = (1 + 𝜀), and furthermore, S has at most 𝑟 nonzero rows, for

𝑟 = 𝜀−2𝑛1−𝑝/2𝑑𝑝/2 poly log 𝑛.

Recursively applying this result gives a matrix S with

𝑟 = 𝜀−4/𝑝𝑑poly log 𝑛.

Note that Theorem 2.29 achieves a nearly optimal dependence on 𝑑, while it is slightly loose in the 𝜀
dependence.

2.2.3 Active ℓ𝑝 Linear Regression [MMWY22, WY23a]

One of the motivating problems for the study of subspace embeddings is the least squares linear regression
problem [DMM06a, Sar06], or more generally, the ℓ𝑝 linear regression problem, in which we wish to solve

min
x∈R𝑑
‖Ax− b‖𝑝𝑝.

When one takes a sampling-based approach to constructing the subspace embedding for the matrix [A b],
including many of the algorithms previously, then the final solution only depends on very few coordinates
of the target vector b, namely the 𝑟 rows sampled by the subspace embedding matrix S. Thus, this gives
hope for an algorithm which minimizes the number of entries of the target vector b it has to read, which is a
problem known as active learning or active regression.
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Definition 2.30 (Active ℓ𝑝 linear regression). An active ℓ𝑝 linear regression algorithm has query complexity
𝑟 if, given A ∈ R𝑛×𝑑 and query access to the entries of b ∈ R𝑛, it reads 𝑟 entries of the vectors and outputs
x̂ ∈ R𝑑 such that

‖Ax̂− b‖𝑝𝑝 ≤ (1 + 𝜀) min
x∈R𝑑
‖Ax− b‖𝑝𝑝.

Our goal is to minimize the query complexity 𝑟.

Such an algorithm has significant value in practice, since label acquisition can oftentimes require significantly
more resources than the training features, for example if one needs to manually label the training examples
to be used.

Unfortunately, the previous approach of constructing sampling-based subspace embeddings for [A b] does
not immediately yield active regression algorithms, since the sampling probabilities will depend on b, and
thus the algorithm needs to read all entries of b anyway. A natural fix is to take the sampling probabilities to
only depend on A but not b, by, for example, using the ℓ𝑝 Lewis weights of the matrix A without including
b. However, the correctness of this algorithm is then no longer clear, as we no longer have the subspace
embedding guarantee which includes b. Nonetheless, prior work has shown that this approach in fact does
yield efficient active regression algorithms in several cases.

For the most important case of 𝑝 = 2, the work of [CP19] obtained an optimal bound of Θ(𝜀−1𝑑), which
notably removes a log 𝑑 factor that is inherent in sampling-bashed approaches, by using spectral sparsifiers
developed in [LS15]. For perhaps the next most important case of 𝑝 = 1, which corresponds to least absolute
deviations regression, two nearly simultaneous works [CD21, PPP21] showed that a sampling-based approach
which takes the sampling probabilities to be the ℓ1 Lewis weights of A (without appending b) yields an
upper bound of 𝑂(𝜀−2𝑑 log(𝑑/𝜀)), with a nearly matching lower bound of Ω(𝜀−2𝑑). However, besides these
two special cases, the true sample complexity of active ℓ𝑝 linear regression is far from settled. The only
other known bound is an upper bound of Ω(𝜀−2𝑑2 log(𝑑/𝜀)) due to [CD21] for 1 < 𝑝 < 2. This leads to the
following question:

Question 2.31. What is the query complexity of active ℓ𝑝 linear regression for 𝑝 ̸= 1, 2?

In two works [MMWY22, WY23a], we obtain nearly optimal solutions to Question 2.31 for the entire
range of 0 < 𝑝 <∞.

Theorem 2.32 (Nearly optimal active ℓ𝑝 linear regression, [MMWY22, WY23a]). There is an active ℓ𝑝
linear regression algorithm (see Definition 2.30) with query complexity at most 𝑟 with probability at least
99/100, where

𝑟 =

⎧⎪⎨⎪⎩
�̃�(𝜀−2𝑑) 0 < 𝑝 < 1

�̃�(𝜀−1𝑑) 1 < 𝑝 < 2

�̃�(𝜀1−𝑝𝑑𝑝/2) 2 < 𝑝 <∞

Furthermore, for any active ℓ𝑝 linear regression algorithm which succeeds with probability at least 99/100, its
query complexity 𝑟 must be at least

𝑟 =

⎧⎪⎨⎪⎩
Ω(𝜀−2𝑑) 0 < 𝑝 < 1

Ω(𝜀−1𝑑) 1 < 𝑝 < 2

Ω(𝜀1−𝑝𝑑𝑝/2) 2 < 𝑝 <∞

Notably, we show that there is a sharp phase transition in the behavior of the query complexity at 𝑝 = 1,
where 𝑝 > 1 admits an upper bound of �̃�(𝜀−1𝑑) queries while 𝑝 ≤ 1 requires Ω(𝜀−2𝑑) queries.

The algorithm itself is similar to prior ideas, and we simply take the approach of sampling rows of A and
entries of b proportionally to the ℓ𝑝 Lewis weights of A. However, the analysis requires significantly new
ideas, and in particular, we introduce two key ingredients.

The first is the observation that, while the ℓ𝑝 Lewis weights do not upper bound the sensitivity of the
entries of b, any entry b𝑖 of b can be classified as either “too big” or “not too big” by comparing b𝑖 to the
𝑖th sensitivity (see Definition 2.25) 𝜎𝑖(A). For entries which are “too big”, we show that the loss contribution
|[Ax− b](𝑖)|𝑝 = |⟨a𝑖,x⟩ − b|𝑝 on the 𝑖th coordinate is dominated by b𝑖 for any nearly optimal solution x,
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and thus this entry can be effectively ignored. On the other hand, for entries b𝑖 which are “not too big”, the
sensitivity of b𝑖 is bounded by 𝜎𝑖(A), which allows an appropriate modification of the chaining arguments for
Lewis weight sampling [BLM89, LT91, SZ01] to go through. The idea above is sufficient for nearly optimal
bounds for 𝑝 < 1, but for 𝑝 > 1, this still leads to a result that is off by a single 𝜀 factor. In order to further
optimize our bounds, we additionally introduce a second novel technique which allows us to reduce the 𝜀
dependence by using the strict convexity of the ℓ𝑝 loss for 𝑝 > 1. This is done by noting that for 𝑝 > 1, nearly
optimal solutions must necessarily be close to the optimal solution, and this fact can be used to improve the
sampling error analysis.

Our work has been used to obtain online active regression algorithms in follow-up work of [CLS22].

2.2.4 High-Distortion ℓ𝑝 Subspace Embeddings [WY22a]

Until now, we have focused on subspace embeddings which achieve an distortion of (1 + 𝜀). However, in
certain applications, such a high accuracy may not be necessary, and a natural question is whether the number
of rows 𝑟 of the sketch S can be improved or not if larger errors are allowed. In fact, (1 + 𝜀) is essentially the
end of the story of 0 < 𝑝 ≤ 2, as the upper bounds obtained by ℓ𝑝 Lewis weight sampling (Theorem 2.18)

already achieve a bound of �̃�(𝜀−2𝑑), and it is easy to see that at least 𝑑 rows is needed for any subspace
embedding, even just to maintain the rank. On the other hand, for 𝑝 > 2, one could still ask for more, since
if we require Θ(1) distortion, then the number of rows necessary is 𝑟 = Ω(𝑑𝑝/2) [LWW21], whose exponential
dependence on 𝑝 may be prohibitive for large 𝑝. In the work of [WY22a], we ask the following question:

Question 2.33. For 𝑝 > 2, what trade-offs between the number of rows 𝑟 and the distortion 𝜅 are possible in
the regime where 𝜅≫ 1?

In [WY22a], we provide a nearly optimal trade-off between 𝑟 and 𝜅 as a solution to Question 2.33.

Theorem 2.34 (High-distortion ℓ𝑝 Lewis weight sampling [WY22a]). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 <∞. Then,
for any 2 < 𝑞 < 𝑝, there is a diagonal map S ∈ R𝑛×𝑛 such that, with probability at least 99/100,

Pr
{︁
for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ ‖SAx‖𝑞 ≤ 𝑂(𝑑

1
2 (1−

𝑞
𝑝 ))‖Ax‖𝑝

}︁
≥ 99

100

and furthermore, S has at most 𝑟 nonzero rows, for 𝑟 = 𝑂(𝑑𝑞/2(log 𝑑)3). Furthermore, any randomized
algorithm which constructs a data structure 𝒬 such that

Pr
{︁
for all x ∈ R𝑑, ‖Ax‖𝑝 ≤ 𝒬(x) ≤ 𝑜(𝑑

1
2 (1−

𝑞
𝑝 ))‖Ax‖𝑝

}︁
≥ 99

100

requires Ω(𝑑𝑞/2+1) bits of space.

Our proof of Theorem 2.34 proceeds in two steps: (1) we first show that we can approximate ‖Ax‖𝑝
by ‖W

1
𝑞−

1
𝑝Ax‖𝑞 for some diagonal reweighting map W up to a factor of 𝑑

1
2 (1−

𝑞
𝑝 ), and (2) we use ℓ𝑞 Lewis

weight sampling to reduce the number of rows to �̃�(𝑑𝑞/2) while preserving the distortion up to Θ(1) factors.
Step (2) is simply using Theorem 2.20, so the key ingredient here is step (1).

Perhaps surprisingly, we show that step (1) can in fact also be implemented using ℓ𝑝 Lewis weights, and
the reweighting map W can be simply be taken to be the ℓ𝑝 Lewis weights. More specifically, we show the
following theorem:

Theorem 2.35 (ℓ𝑝 Lewis weight change of density [WY22a]). Let A ∈ R𝑛×𝑑 and let 0 < 𝑞 < 𝑝 <∞. Let
W = diag(w𝑝(A)) be the diagonal map given by the ℓ𝑝 Lewis weights of A. Then, there is a scaling factor 𝑐
such that for every x ∈ R𝑑,

‖Ax‖𝑝 ≤ 𝑐‖W
1
𝑞−

1
𝑝Ax‖𝑞 ≤ 𝜅‖Ax‖𝑝

for

𝜅 =

{︃
𝑑

1
𝑞−

1
𝑝 min(𝑝, 𝑞) ≤ 2

𝑑
1
2 (1−

𝑞
𝑝 ) min(𝑝, 𝑞) ≥ 2
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In fact, the result of Theorem 2.35 provides an elementary proof of a result of [LT80] from the geometric
functional analysis literature, who proved the existence of a diagonal map satisfying the guarantees of Theorem
2.35 by using sophisticated results from the theory of factorization of operators, 𝑝-summing norms, and
operator ideals. On the other hand, our proof of Theorem 2.35 only requires elementary inequalities and ℓ𝑝
Lewis weights. One of the key insights we use is that if W are the ℓ𝑝 Lewis weights, then the W is also the

ℓ𝑞 Lewis weights of the matrix W
1
𝑞−

1
𝑝A.

2.2.5 Streaming ℓ∞ Subspace Embeddings and Computational Geometry [WY22a]

An investigation of high-distortion ℓ𝑝 subspace embeddings for 𝑝 > 2 prompts a closely related study in the
streaming setting, in which we must compute an ℓ𝑝 subspace embedding of the matrix A ∈ R𝑛×𝑑, when A is
presented as 𝑛 rows a𝑖 ∈ R𝑑 which arrive one by one in one pass over a stream.

Definition 2.36 (Geometric streaming setting). In the geometric streaming setting, an algorithm receives
as input an integer matrix A ∈ Z𝑛×𝑑 with entries bounded by |A𝑖,𝑗 | ∈ [− poly(𝑛),poly(𝑛)] in a row arrival
stream, that is, the algorithm sees the rows a𝑖 ∈ Z𝑑 of A one at a time in one pass through the stream.

Note that when we have algorithms for subspace embeddings with (1 + 𝜀) distortion, then we can easily
obtain a streaming algorithm by a technique known as merge-and-reduce, in which we iteratively perform
the operations of concatenating new rows and reducing the size of the stored subspace embedding by re-
computing a subspace embedding. These operations can be performed in a way such that the subspace
embedding is re-computed at a “depth” of only 𝑂(log 𝑛) if the input matrix A has 𝑛 rows, meaning that if
we compute subspace embeddings with distortion (1 + 𝜀/ log 𝑛) at each step, then the total distortion is only
(1 + 𝜀/ log 𝑛)log𝑛 = (1+𝑂(𝜀)). However, this trick does not work for when our distortions are 𝜅 = (1+Ω(1)),
and leads to poly(𝑛) factor total distortions when applied in this case.

Perhaps the most important case of this problem is that of computing ℓ∞ subspace embeddings in the
streaming model. In this case, Theorem 2.35, both in the upper bound and lower bound, can be generalized
to show that ℓ∞ subspace embeddings with 𝜅 =

√
𝑑 distortion and 𝑟 = 𝑑 rows can be obtained, and that the

upper bound comes from ℓ∞ Lewis weights, which corresponds to the well-studied problem of Löwner–John
ellipsoids [Joh48, Tod16], also known as minimum volume enclosing ellipsoids. However, the question of
computing Löwner–John ellipsoids in the streaming setting using only poly(𝑑) bits of space is a central
unresolved problem in the literature of computational geometry [MSS10, AS15]. Indeed, the only known
prior results for computing Löwner–John ellipsoids in a stream uses exp(poly(𝑑)) bits of space in order to
estimate the extent of every direction in R𝑑 using a net [AHV04, AHV05], rather than polynomial in 𝑑. Thus
the question of efficiently maintaining ℓ∞ subspace embeddings in a stream is an important problem.

In fact, in our work of [WY22a], we resolve both the problem of maintaining ℓ∞ subspace embeddings
and Löwner–John ellipsoids in the streaming setting, and in fact, a multitude of other problems in the
streaming computational geometry literature which previously only admitted upper bounds with exponential
dependencies in the dimension. Our central theorem is the following:

Theorem 2.37 (Streaming ℓ∞ subspace embedding [WY22a]). There is a deterministic streaming algorithm
such that, for any A ∈ Z𝑛×𝑑 presented in a geometric stream (Definition 2.36), the algorithm maintains SA
for a matrix S ∈ Z𝑟×𝑛 such that for every x ∈ R𝑑,

‖Ax‖∞ ≤ ‖SAx‖∞ ≤ 𝑂(
√︀
𝑑 log 𝑛)‖Ax‖∞.

Furthermore, the algorithm uses at most 𝑂(𝑑2(log 𝑛)2) bits of space.

Our main technique is the use of online leverage scores, which were introduced by [CMP16, CMP20], as a
tool both to discover directions x ∈ R𝑑 in which the ℓ∞ norm ‖Ax‖∞ is updated significantly in a stream,
and to bound the total number of such updates which can occur. Our work also shows how to sharpen the
bound on the sum of online leverage scores given by [CMP16, CMP20] when the input matrix is an integer
matrix with bounded bit complexity, which answers open questions asked in [BDM+20].

A related result on maintaining Löwner–John ellipsoids in the streaming setting has been obtained in
concurrent work of [MMO22], which achieve results that depend on a certain condition number of the ellipsoid.
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2.2.6 Subspace Embeddings for General Losses [MMWY22]

Up until now, we have conducted a thorough study of subspace embeddings for the ℓ𝑝 loss, with applications
to ℓ𝑝 regression in mind. In fact, the problem of computing subspace embeddings makes sense in a far more
generalized setting, where we wish to approximate loss functions of the form

‖Ax‖𝑔,w :=

𝑛∑︁
𝑖=1

w𝑖 · 𝑔([Ax](𝑖)), (3)

where we denote the loss function as a norm in an abuse of notation, despite the fact that ‖·‖𝑔,w may not be
a norm. For example, taking the weights w𝑖 to be all ones and 𝑔 to be the so-called Huber loss 𝐻 defined as

𝐻(𝑥) :=

{︃
𝑥2/2 |𝑥| ≤ 1

|𝑥| − 1/2 |𝑥| ≥ 1

is useful in solving linear regression with the Huber loss, which is a popular loss function in the literature of
robust statistics [CW15a]. Similarly, taking 𝑔 to be the Tukey loss 𝑇 defined as

𝑇 (𝑥) :=

{︃
1− (1− 𝑥2)3 |𝑥| ≤ 1

1 |𝑥| ≥ 1

is another popular choice for robust regression [CWW19]. Yet another example is to take 𝑔 to be the logistic
loss, given by

𝑔(𝑥) := log(1 + 𝑒𝑥)

which corresponds to logistic regression [MSSW18, MMR21].

Improved sensitivity bounds for general loss functions. In fact, we have already discussed a
generalized approach to estimating functions of the form of (3) in Section 2.2.2, via sensitivity sampling.
Recall that in this framework, we wish to compute upper bounds on the sensitivity scores 𝜎𝑖, which in this
case are given by

𝜎𝑖(A) := sup
Ax ̸=0

w𝑖 · 𝑔([Ax](𝑖))∑︀𝑛
𝑗=1 w𝑗 · 𝑔([Ax](𝑗))

.

Given upper bounds �̃�𝑖 ≥ 𝜎𝑖(A) on the sensitivity scores, we fairly immediately obtain a sampling algorithm
which samples at most �̃�(𝜀−2S̃𝑑) rows of A, where S̃ =

∑︀𝑛
𝑖=1 �̃�𝑖. The primary difficult in this approach is

efficiently obtaining the sensitivity upper bounds �̃�𝑖. Previously, an approach based on ellipsoidal rounding of
the balls induced by the norm ‖Ax‖𝑔,w has been proposed by [TMF20]. However, computing Löwner–John
ellipsoids for general convex bodies is computational expensive, and furthermore, leads to poly(𝑑) factor
losses in the total sensitivity upper bound S̃ and thus in the sample complexity.

In the work of [MMWY22], we obtain a significantly improved algorithm for estimating sensitivity scores,
which is nearly optimal for a wide class of loss functions.

Theorem 2.38 (Sensitivity upper bounds for general loss functions, Theorem 4.9, [MMWY22]). Let
𝑀 : R≥0 → R≥0 be increasing, has 𝑀(0) = 0, and has at most quadratic growth, that is,

𝑀(𝑦)

𝑀(𝑥)
≤ 𝑐
(︁𝑦
𝑥

)︁2
for all 𝑦 > 𝑥. Let 𝑔(𝑥) := 𝑀(|𝑥|). Then, there is an algorithm that computes upper bounds �̃�𝑖 to the
sensitivities with respect to 𝑔 such that S̃ =

∑︀𝑛
𝑖=1 𝜎𝑖 ≤ 𝑂(𝑑 log2 𝑛+ 𝜏) in time

𝑂

(︂
nnz(A) log3 𝑛+

𝑛𝑑𝜔

𝜏
log 𝑛

)︂
.
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The class of functions handled by Theorem 2.38 include the Huber loss, any ℓ𝑝 loss for 𝑝 ≤ 2, as well as a
wide variety of loss functions considered in the robust statistics literature that behave similarly to the Huber
loss, that is, quadratic growth near the origin and linear growth away from the origin.

The main idea towards obtaining Theorem 2.38 is starts from an observation from the streaming literature
[BO10] that for functions 𝑔 of at most quadratic growth, entries 𝑖 ∈ [𝑛] of a vector y which are “heavy” in
the 𝑔 loss, that is, 𝑔(y𝑖)/‖y‖𝑔 = Ω(1), must necessarily be “heavy” in the ℓ2 loss. Thus, a superset of heavy
elements in the 𝑔 loss can be identified by identifying the heavy elements in the ℓ2 loss, and furthermore, this
superset is not too large by the definition of heaviness. This can then be generalized to identifying 𝜀-heavy
elements, that is, 𝑔(y𝑖)/‖y‖𝑔 ≥ 𝜀, based on a trick by randomly hashing the entries of y into 𝑂(1/𝜀) buckets
so that, within this bucket, an 𝜀-heavy entry is likely to be Ω(1)-heavy. We can now draw an analogy between
“heavy” entries under the 𝑔 loss with rows of A with large sensitivity 𝜎𝑖, as well as “heavy” entries under the
ℓ2 loss with rows of A with large ℓ2 leverage score. Thus, by combining leverage score estimation with a
hashing trick, we arrive at our Theorem 2.38.

Sharper sample complexity for the Huber loss. As we previously observed in Section 2.2.2, the
sensitivity sampling framework, when applied näıvely, is loose for certain problems such as ℓ2 subspace
embeddings. Thus, one may hope for even sharper results than those obtained as a consequence of sensitivity
sampling combined with Theorem 2.38. In [MMWY22], we also study the problem of whether the sample
complexity bound of �̃�(𝜀−2𝑑2 log2 𝑛) from the sensitivity sampling approach can be improved for the Huber
loss, which has more structure than general loss functions handled in Theorem 2.38. Indeed, we are able to
obtain such a result:

Theorem 2.39 (Subspace embeddings for the Huber loss [MMWY22]). Let A ∈ R𝑛×𝑑 and 𝑑 = Ω(log(1/𝜀)).
Then, there is an algorithm which outputs weights w ∈ R𝑛

≥0 such that

Pr

{︃
𝑛∑︁

𝑖=1

𝐻([Ax](𝑖)) = (1± 𝜀)

𝑛∑︁
𝑖=1

w𝑖 ·𝐻([Ax](𝑖)

}︃
≥ 99

100

and furthermore, w has at most 𝑟 nonzero entries, for 𝑟 = 𝑑4−2
√
2 · poly(log 𝑛, 𝜀−1), where 4− 2

√
2 < 1.172.

Recall that for ℓ𝑝 subspace embeddings, one of the crucial ingredients towards obtaining nearly optimal

bounds of �̃�(𝜀−2𝑑) for 𝑝 ≤ 2 and �̃�(𝜀−2𝑑𝑝/2) for 𝑝 > 2 is a chaining argument developed in the works of
[BLM89, LT91, SZ01]. However, the net constructions in these arguments are tailored to ℓ𝑝 losses, and
heavily make use of special algebraic properties of ℓ𝑝 losses which are not available to the Huber loss. Instead,
we show that in order to develop chaining arguments for the Huber loss, we can in fact directly use the net
constructions for ℓ𝑝 losses, if we oversample by an appropriate factor. Furthermore, we further optimize
this argument by showing that at each “radius” of the Huber loss ‖Ax‖𝐻 , we can use a different choice of
𝑝 ∈ [1, 2] depending on which choice of 𝑝 yields the smallest distortion.

2.2.7 Future Directions for Non-Oblivious Subspace Embeddings

Many important directions remain open in the study of subspace embeddings, both for ℓ𝑝 losses as well as
general losses.

Nearly Optimal Bounds for ℓ𝑝 Subspace Embeddings for 𝑝 > 2. One of the outstanding gaps in
bounds for ℓ𝑝 subspace embeddings is the optimality of the upper bound given in Theorem 2.15 and Theorem

2.20 in terms of the dependence on 𝑑 and 𝜀 for 𝑝 > 2. So far, the upper bound is 𝑟 = �̃�(𝜀−2𝑑𝑝/2) for a
subspace embedding S with 𝑟 rows, while the best known lower bound is still Theorem 2.16 due to [LWW21],
which gives a lower bound of 𝑟 = Ω̃(𝜀−1𝑑𝑝/2 + 𝜀−2𝑑). Thus, resolving this last gap from obtaining nearly
optimal trade-offs between number of rows 𝑟, 𝑑, and the accuracy parameter 𝜀 is our first open question
about ℓ𝑝 subspace embeddings.

Question 2.40. For 𝑝 ∈ (2,∞) ∖ 2Z, what is the smallest possible number of rows 𝑟 that is possible for ℓ𝑝
subspace embeddings with (1 + 𝜀) distortion? Is there a lower bound showing that 𝑟 = Ω(𝜀−2𝑑𝑝/2) rows is
necessary?
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Deterministic ℓ𝑝 Subspace Embeddings. For 𝑝 = 2, the seminal work of [BSS09, BSS12] showed that
it is possible to deterministically obtain ℓ2 subspace embeddings with 𝑟 = 𝑂(𝜀−2𝑑) rows in polynomial time,
and has spurred multiple works further improving the running time of this algorithm [Zou12, ALO15]. This
algorithm, however, makes heavy use of the special structure of the ℓ2 norm, and does not yield results for ℓ𝑝
subspace embeddings for 𝑝 ̸= 2. Thus, an interesting question is whether polynomial time algorithms for
constructing ℓ𝑝 subspace embeddings exist or not.

Question 2.41. Is there a deterministic polynomial time algorithm for constructing (1 + 𝜀)-approximate ℓ𝑝
subspace embeddings with �̃�(𝜀−2𝑑) rows for 𝑝 < 2 or �̃�(𝜀−2𝑑𝑝/2) rows for 𝑝 > 2?

In fact, even a Las Vegas algorithm for computing ℓ𝑝 subspace embeddings may be interesting, as there
are currently no known efficient algorithms for checking whether two matrices are close in the sense of ℓ𝑝
subspace embeddings, for any 𝑝 ̸= 2:

Question 2.42. Is there a polynomial time Las Vegas algorithm for constructing (1 + 𝜀)-approximate ℓ𝑝
subspace embeddings with �̃�(𝜀−2𝑑) rows for 𝑝 < 2 or �̃�(𝜀−2𝑑𝑝/2) rows for 𝑝 > 2?

Removing Logarithmic Factors for ℓ𝑝 Subspace Embeddings. A closely related problem to Question
2.41 is the question of removing logarithmic factors in the number of rows 𝑟. In particular, the work of
[BSS09, BSS12] as well as its various follow-ups [Zou12, ALO15, LS15] obtain 𝑟 = 𝑂(𝜀−2𝑑), without any
logarithmic factor losses. On the other hand, for independent sampling-based approaches such as Lewis
weight sampling, an extra logarithmic factor is inherent due to the coupon-collector problem. However, for
most values of 𝑝 ̸= 21, no other approaches towards obtaining (1 + 𝜀)-approximate ℓ𝑝 subspace embeddings
are known. Thus, an important question is the following:

Question 2.43. Is there an algorithm for constructing (1 + 𝜀)-approximate ℓ𝑝 subspace embeddings with
𝑟 = 𝑂(𝜀−2𝑑) rows for 𝑝 < 2 and 𝑟 = 𝑂(𝜀−2𝑑𝑝/2) rows for 𝑝 > 2?

For 𝑝 = 1, this problem has been raised in [Sch07, HRR22].

Subspace Embeddings for the Huber Loss. In our Theorem 2.39 from [MMWY22], we have made
substantial progress in obtaining sharper bounds for subspace embeddings for the Huber loss, showing that

the dependence on 𝑑 can be reduced to 𝑑4−2
√
2, where 4− 2

√
2 < 1.172. An important question is whether

this 𝑑 dependence can be reduced all the way down to 𝑑 or not. This question has applications beyond Huber
regression, and can be used in subroutines for fast algorithms for high precision algorithms for ℓ𝑝 regression
[APS19, AKPS19, AS20, GPV21].

Question 2.44. Is there an algorithm for constructing (1 + 𝜀)-approximate subspace embeddings for the
Huber loss with 𝑟 = 𝑑 · poly(log 𝑛, 𝜀−1) rows?

One promising approach to this problem is the root leverage score sampling algorithm, which has used
in [CW15a, GPV21] to obtain Huber subspace embeddings, and was shown to yield bounds of the form
𝑑 · poly(log 𝑛, 𝜀−1) in [WY23c] for the ℓ𝑝 loss.

Nearly Optimal Guarantees for Sensitivity Sampling. Finally, we re-iterate our main open question,
Question 2.27, from the work of [WY23c] from Section 2.2.2: what is the smallest sample complexity possible
for the ℓ𝑝 sensitivity sampling algorithm? While we have achieved the bounds of �̃�(𝜀−2S2/𝑝) for 𝑝 < 2 and

�̃�(𝜀−2S2−2/𝑝) for 𝑝 > 2, we conjecture that a bound of �̃�(𝜀−2(S+ 𝑑)) is possible.

3 Low Rank Approximation

Along with subspace embeddings and linear regression, low rank approximation, which is the problem of
approximating matrices by one of lower rank, is one of the foundational problems in the field of randomized
numerical linear algebra [FKV04, DV06, DKM06a, DKM06b, DKM06c, DMM06b].

1 An important exception is 𝑝 ∈ 2Z, which admit exact isometries via other methods due to its special structure [Sch11].
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Definition 3.1. In the general rank 𝑘 approximation problem, we consider the problem of finding a rank 𝑘
matrix Â (or a rank 𝑟 matrix with 𝑟 slightly larger than 𝑘) such that

‖A− Â‖ ≤ 𝜅 min
rank(A′)≤𝑘

‖A−A′‖.

3.1 Column Subset Selection with Entrywise Losses [WY23a]

As is the case for subspace embeddings and linear regression, the problem of low rank approximation is best
understood when the norm under consideration is the ℓ2 loss (which corresponds to the Frobenius norm in this
case), and a long line of work has studied fast randomized algorithms for low rank approximation under the
Frobenius norm [FKV04, DV06, DKM06a, DKM06b, DKM06c, DMM06b, CW13, MM15, CMM17, BW17].
However, when the input matrix is corrupted by heavy-tailed noise or include outliers, the ℓ2 norm is not
always the most desirable due to the fact that it tends to fit to the outliers too much. Thus, oftentimes, it is
desirable to solve the low rank approximation problem under other error measures, especially those with
slower growth than the ℓ2 loss. One notable class of losses is the entrywise ℓ𝑝 loss, and more generally, the
entrywise 𝑔 loss, where 𝑔 can be an arbitrary loss function.

Definition 3.2 (Entrywise losses). Let A ∈ R𝑛×𝑑 and let 𝑔 : R → R≥0. Then, we define the entrywise 𝑔
norm of A as

‖A‖𝑔 :=

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑔(A𝑖,𝑗).

When 𝑔(𝑥) = |𝑥|𝑝, then we instead define

‖A‖𝑝,𝑝 :=

⎛⎝ 𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

|A𝑖,𝑗 |𝑝
⎞⎠1/𝑝

to be the entrywise ℓ𝑝 loss.

For 𝑝 ̸= 2, the entrywise loss low rank approximation is hard to approximate in a variety of settings
[Mie09, GV18, DHJ+18, BBB+19, MW21] and thus we need to allow for an appropropriate notion of
approximation. We study bicriteria approximation guarantees of the following form:

Definition 3.3 (Bicriteria Coreset for Low Rank Approximation). Let A ∈ R𝑛×𝑑, let 𝑘 be a rank parameter,
and let ‖·‖ be any loss function. Let 𝑆 ⊆ [𝑑] a subset of columns, and write A|𝑆 for the 𝑛× 𝑆2 matrix formed
by the columns of A indexed by 𝑆. Then, 𝑆 is a bicriteria coreset with distortion 𝜅 ≥ 1 if

min
X∈R𝑆×𝑑

‖A−A|𝑆X‖ ≤ 𝜅 min
rank(A′)≤𝑘

‖A−A′‖.

3.1.1 Algorithms for General Entrywise Losses

We begin by presenting our result on entrywise 𝑔-norm low rank approximation, first considered by [SWZ19].
For our analysis, we will need to assume several natural properties on 𝑔, which have been considered in previous
work [CW15b, CW15a, SWZ19, MMWY22] for obtaining provable guarantees for randomized numerical
linear algebra under a broad class of loss functions:

Definition 3.4. Let 𝑔 : R→ R≥0. Then:

• 𝑔 satisfies the ati𝑔,𝑡-approximate triangle inequality if for any 𝑥1, 𝑥2, . . . , 𝑥𝑡, 𝑔(
∑︀

𝑥𝑖) ≤ ati𝑔,𝑡 ·
∑︀

𝑖 𝑔(𝑥𝑖).

• 𝑔 is mon𝑔-monotone if for any 0 ≤ |𝑥| ≤ |𝑦|, 𝑔(𝑥) ≤ mon𝑔 · 𝑔(𝑦).

• 𝑔 has at least lin𝑔-linear growth if for any 0 < |𝑥| ≤ |𝑦|, 𝑔(𝑦)/𝑔(𝑥) ≥ lin𝑔 · |𝑦|/|𝑥|.
2 We allow for indexing matrices and vectors by arbitrary sets. For example, R𝑆 is the set of vectors with entries indexed by

elements 𝑠 of 𝑆, and R𝑆×𝑑 is the set of matrices with rows indexed by elements of 𝑆 and columns indexed by [𝑑].
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For example, popular functions that satisfy these bounds include the Huber loss, Fair loss, Cauchy loss,
ℓ1-ℓ2 loss, and the quantile loss [SWZ19]. While the lin𝑔-linear growth bound excludes the Tukey loss, which
grows quadratically near the origin and stays constant away from the origin, it allows for a modification of the
Tukey loss where the constant away from the origin is replaced by an arbitrarily slow linear growth [CW15a].

[SWZ19] showed that, given an algorithm for solving linear regression in the 𝑔-norm with relative error
reg𝑔, it is possible to compute a set of 𝑂(𝑘 log 𝑑) columns achieving an approximation ratio of

𝑂(𝑘 log 𝑘) · reg𝑔 ·mon𝑔 · ati𝑔,𝑘+1.

for 𝑔 satisfying the mon𝑔-monotone and ati𝑔,𝑡-approximate triangle inequality properties. We show that
for the slightly restricted family of 𝑔 of at least lin𝑔-linear growth, which for example includes all convex 𝑔
[CW15a], we obtain an improved approximation ratio of

𝑂(
√︀
𝑘 log log 𝑘) ·

reg𝑔 · ati𝑔,𝑠+1

lin𝑔
.

Our guarantee matches, and in fact improves a log factor, of the ℓ1 column subset selection guarantee of
[MW21], despite being a far more general result. Furthermore, our bound is tight, in the sense that the

√
𝑘

cannot be improved to a smaller polynomial due to a matching lower bound for ℓ1 column subset selection
[SWZ17]. Our technique for removing the log 𝑘 factor in the distortion is general, and can be used to improve
prior results for ℓ𝑝 column subset selection as well [CGK+17, DWZ+19, MW21].

Theorem 3.5 (Improved guarantees for entrywise low rank approximation). Let A ∈ R𝑛×𝑑 and let 𝑘 ≥ 1.
Let 𝑠 = 𝑂(𝑘 log log 𝑘). Let 𝑔 : R→ R≥0 be a loss function satisfying the ati𝑔,𝑡-approximate triangle inequality
for 𝑡 = 𝑠+ 1 and the lin𝑔-linear growth property. Furthermore, suppose that there is an algorithm outputting
x̃ such that

‖Bx̃− b‖𝑔 ≤ reg𝑔,𝑠 · min
x∈R𝑠
‖Bx̃− b‖𝑔

for any B ∈ R𝑛×𝑠 and b ∈ R𝑛. Then, there is an algorithm which outputs a subset 𝑆 ⊆ [𝑑] of |𝑆| =
𝑂(𝑘(log log 𝑘)(log 𝑑)2) columns and X ∈ R𝑡×𝑑 such that

⃦⃦
A−A|𝑆X

⃦⃦
𝑔
≤ 𝑂(

√
𝑠)
reg𝑔,𝑂(𝑠 log 𝑑) · ati𝑔,𝑠+1

lin𝑔
min

rank(A′)≤𝑘
‖A−A′‖𝑔.

For the important case of the Huber loss, given by

𝐻(𝑥) =

{︃
|𝑥|2/2 if |𝑥| ≤ 1

|𝑥| − 1/2 if |𝑥| > 1
,

we specialize our technique to give the following optimized result:

Theorem 3.6 (Entrywise Huber Low Rank Approximation). Let A ∈ R𝑛×𝑑 and let 𝑘 ≥ 1. There is an
algorithm which outputs a subset 𝑆 ⊆ [𝑑] of |𝑆| = 𝑂(𝑘(log log 𝑘) log 𝑑) columns and X ∈ R𝑆×𝑑 such that⃦⃦

A−A|𝑆X
⃦⃦
𝐻
≤ 𝑂(𝑘) min

rank(A′)≤𝑘
‖A−A′‖𝐻 ,

where ‖·‖𝐻 denotes the entrywise Huber loss.

The previous best known bound [SWZ19] gave a distortion of �̃�(𝑘2) for the same number of columns.
For both general entrywise low rank approximation as well as low rank approximation under the Huber

loss, our new results are in fact based on our new constructions of well-conditioned spanning sets in Theorem
2.8.
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3.1.2 Algorithms for the Entrywise ℓ𝑝 Norm

For 𝑝 ̸= 2, efficient bicriteria approximations for entrywise ℓ𝑝 low rank approximation were obtained in a line
of work initiated by [SWZ17], who studied the case of 𝑝 = 1. For other 𝑝 ≠ 2, [CGK+17, DWZ+19] gave
algorithms selecting 𝑂(𝑘 log 𝑑) columns achieving a distortion of �̃�(𝑘1/𝑝) for 𝑝 < 2 and �̃�(𝑘1−1/𝑝) for 𝑝 > 2,
and a hardness result showing that any approximation spanned by 𝑘 columns must have distortion at least

Ω(𝑘1−1/𝑝) (4)

Perhaps surprisingly, [MW21] then showed that the lower bound of (4) could be circumvented when 𝑝 < 2,
by giving an algorithm which selected �̃�(𝑘 log 𝑑) columns and achieved a distortion of �̃�(𝑘1/𝑝−1/2). Note
that this does not contradict the lower bound, since the hardness result of (4) applies only when exactly 𝑘
columns are selected. It was also shown that this result was optimal for such bicriteria algorithms, with a
lower bound ruling out 𝑘1/𝑝−1/2−𝑜(1) approximations for any algorithm selecting �̃�(𝑘) columns, based on a
result of [SWZ17] which ruled out 𝑘1/2−𝑜(1) approximations for any set of poly(𝑘) columns for 𝑝 = 1.

Unfortunately, the algorithmic result of [MW21] uses 𝑝-stable random variables [Nol20] which only exist
for 𝑝 ≤ 2, and similar improvements were not given for 𝑝 > 2. Similarly, the hardness results also rely on
specific properties of 𝑝 < 2, and do not apply to 𝑝 > 2. This motivates the following question:

Question 3.7. What distortions are possible for entrywise ℓ𝑝 low rank approximation, if 𝑂(𝑘 log 𝑑) columns
can be selected?

Our main result for entrywise ℓ𝑝 low rank approximation is an algorithm which achieves the natural
analogue of the algorithmic result of [MW21], which circumvents (4):

Theorem 3.8 (Entrywise ℓ𝑝 low rank approximation [WY23a]). Let 𝑝 ∈ [2,∞], let A ∈ R𝑛×𝑑, and let 𝑘 ≥ 1.
There is an algorithm which outputs a subset 𝑆 ⊆ [𝑑] of 𝑂(𝑘 log 𝑑) columns and X ∈ R𝑆×𝑑 such that⃦⃦

A−A|𝑆X
⃦⃦
𝑝,𝑝
≤ 𝑂(𝑘1/2−1/𝑝) min

rank(A′)≤𝑘
‖A−A′‖𝑝,𝑝.

For 𝑝 =∞, we show that Theorem 3.8 is tight by showing that any set of at most poly(𝑘) columns cannot
achieve a distortion better than 𝑘1/2−𝑜(1).

3.2 Online Subspace Approximation [WY23a]

In addition to the generalization of the Frobenius norm to general entrywise losses considered in Section 3.1,
another matrix loss for low rank approximation that is often considered is the (𝑝, 2)-loss, which takes the ℓ2
norms of the 𝑛 rows matrix, and then takes the ℓ𝑝 rows of the resulting 𝑛 numbers.

Definition 3.9. Let A ∈ R𝑛×𝑑. Then, we define the (𝑝, 2)-norm of A as

‖A‖𝑝,2 :=

(︃
𝑛∑︁

𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦𝑝
2

)︃1/𝑝

.

Under this loss, the low rank approximation problem has a more geometric intuition due to the structure
of the ℓ2 norm. Indeed, it can be shown that the optimal rank 𝑘 approximation A* to A under the (𝑝, 2)-norm
loss takes the form of A* = AP for some orthogonal projection matrix P onto a 𝑘-dimensional subspace.
Thus, it suffices to minimize over only matrices of the form AP, and in this case, the loss can be viewed
as the ℓ𝑝 norms of the distances when projecting the 𝑛 rows {a𝑖}𝑛𝑖=1 of A onto the subspace spanned by P.
This is known as the ℓ𝑝 subspace approximation problem.

Definition 3.10 (ℓ𝑝 subspace approximation). Let ℱ𝑘 denote the set of subspaces 𝐹 ⊆ R𝑑 of rank at most 𝑘.
We seek a rank 𝑘 subspace 𝐹 ∈ ℱ𝑘 which approximately minimizes

‖A−AP𝐹 ‖𝑝,2 =

[︃
𝑛∑︁

𝑖=1

‖a𝑖 −P𝐹a𝑖‖𝑝2

]︃1/𝑝
=

[︃
𝑛∑︁

𝑖=1

min
x∈𝐹
‖a𝑖 − x‖𝑝2

]︃1/𝑝
,

where a𝑖 = e⊤𝑖 A and P𝐹 is the orthogonal projection matrix onto 𝐹 .
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As with entrywise low rank approximation, the ℓ𝑝 subspace approximation problem is computationally
hard for 𝑝 ̸= 2 [DTV11, GRSW12, CW15b]. For ℓ𝑝 subspace approximation, a particularly fruitful approach
towards designing approximation algorithms is by designing coresets for this problem, in which we select a
weighted subset 𝑆 of the input points a𝑖 to approximate the objective function of Definition 3.10.

Definition 3.11 (Strong coreset). Let A ∈ R𝑛×𝑑, let 𝑝 ≥ 1, and let 𝑘 ≥ 1 be a rank parameter. Then, a
subset 𝑆 ⊆ [𝑛] together with weights w ∈ R𝑆 is a strong coreset if

for all 𝐹 ∈ ℱ𝑘,

𝑛∑︁
𝑖=1

‖a𝑖 −P𝐹a𝑖‖𝑝2 = (1± 𝜀)
∑︁
𝑖∈𝑆

w𝑖‖a𝑖 −P𝐹a𝑖‖𝑝2. (5)

In this setting, it is possible to reduce the number of points to just poly(𝑘/𝜀), and sensitivity sampling
(see Section 2.2.2) [LS10, FL11, VX12, HV20] as well as other sampling-based approaches [DV07] have been
studied for this problem.

For subspace approximation, it turns out that the study of online coresets is particularly interesting,
where the input points {a𝑖}𝑛𝑖=1 arrive one by one in one pass through a stream, and for each 𝑖 ∈ [𝑛], we must
irrevocably choose whether to include a𝑖 in the coreset or permanently discard it. For 𝑝 = 2, the problem of
designing online coresets was studied in the works of [BLVZ19, BDM+20], which achieves a nearly optimal
bound of approximately �̃�(𝑘/𝜀2) vectors, up to a necessary logarithmic factor dependence on the “condition
number” of the stream, based on the ridge leverage score sampling algorithm of [CMM17]. However, for
general 𝑝, the analogous problem is significantly more difficult, due to the fact that existing sampling-based
algorithms for ℓ𝑝 subspace approximation all require a “two-stage” approach, in which a crude approximation
is first computed, and then used to re-sample a coreset.

In the work of [WY23a], we show that sensitivity sampling can in fact be implemented so that the two
stages of sensitivity sampling can be implemented in an online fashion, leading to the first online coresets for
ℓ𝑝 subspace approximation.

Theorem 3.12 (Online coreset for ℓ𝑝 subspace approximation). Let A ∈ R𝑛×𝑑 have online condition number
𝜅OL := ‖A‖2 max𝑛𝑖=1‖A

−
𝑖 ‖23, 𝜀 ∈ (0, 1), 𝑝 ≥ 1 a constant, and let 𝑘 be a rank. There is an online coreset

algorithm, which, with probability at least 99/100, stores a weighted subset of rows 𝑆 with weights w ∈ R𝑆

satisfying (5) such that, for 𝜀′ = 𝜀(𝑝+3)·(1∨(2/𝑝))4,

|𝑆| =

⎧⎪⎪⎨⎪⎪⎩
𝑂
(︀
𝑘2
(︀
𝜀′−2 + 𝜀−2𝜀′−1𝑘2

)︀)︀
log(𝑛𝜅OL)𝑂(1) if 𝑝 < 2

𝑂
(︁
𝑘𝑝
(︁
𝑘𝑝/2+1 + 𝜀′−2 + 𝜀−2𝜀′−1𝑘2

)︁)︁
log(𝑛𝜅OL)𝑂(1) if 2 < 𝑝 < 4

𝑂
(︀
𝑘𝑝
(︀
𝑘3 + 𝜀′−2 + 𝜀−2𝜀′−1𝑘2

)︀)︀
log(𝑛𝜅OL)𝑂(𝑝) if 𝑝 > 4

One of our crucial insights is that the online ℓ𝑝 Lewis weights [WY23b] (see also Section 2.2.1) can be
used to bound the number of times that an optimal solution to the ℓ𝑝 subspace approximation problem can
change significantly, and furthermore, can be used to detect these changes in an online fashion. This allows us
to algorithmically partition the stream into a small number of “substreams” on which a simple adaptation of
sensitivity sampling is guaranteed to work, due to the fact that the optimal solution could not have changed
by much.

3.3 Spectral Low Rank Approximation for Sparse Singular Vectors [WY22b]

In this section, we study algorithms for the classical problem of low rank approximation under the spectral
norm.

Definition 3.13. Let A ∈ R𝑛×𝑑. Then, we define the spectral norm of A to be

‖A‖2 := sup
x̸=0

‖Ax‖2
‖x‖2

3 Here, A𝑖 is the first 𝑖 rows of A.
4 For 𝑎, 𝑏,∈ R, we denote max(𝑎, 𝑏) by 𝑎 ∨ 𝑏 and min(𝑎, 𝑏) by 𝑎 ∧ 𝑏.
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Because the spectral norm is unitarily invariant, the classical Eckhart–Young–Minrky theorem [EY36,
Mir60] shows that the singular value decomposition yields the optimal rank 𝑘 approximation, for all 𝑘. While
the singular value decomposition (SVD) can be expensive to compute for large matrices, the recent results in
randomized numerical linear algebra have achieved substantial developments in fast approximation algorithms
for the SVD, culminating in the following result of [MM15]:

Theorem 3.14 (Approximate spectral SVD [MM15]). Let A ∈ R𝑛×𝑑. Then, there is an algorithm which
computes a rank 𝑘 orthogonal projection matrix P ∈ R𝑑×𝑑 such that

‖A−AP‖2 ≤ (1 + 𝜀) min
rank(A′)≤𝑘

‖A−A′‖2

which runs in time at most 𝑂(𝜀−1/2 nnz(A)𝑘 log 𝑑).

A natural question is whether this running time can be improved or not, under natural assumptions. One
common assumption which often arises in practice is to assume that the top 𝑘 singular vectors of A are
sparse, i.e., there are only 𝑠 nonzero values in the singular vectors. This scenario is a phenomenon known as
localization of eigenvectors, and occurs frequently in many applications [HBCY21, ZYC+21], for example in
quantum many-body problems [LVW09, NH15] and network analysis [PC18].

This question was studied in the work of [HBCY21] and a followup work of [ZYC+21], which studied
algorithms for computing eigenvectors in symmetric matrices with localized eigenvectors. In [HBCY21], the
authors study an algorithm for finding a small submatrix containing the supports of the leading eigenvectors
by greedily adding rows and columns without formal guarantees, and [ZYC+21] seek to improve this approach
using reinforcement learning techniques.

In our work of [WY22b], we obtain one of the first provable speedups over [MM15] under a sparse singular
vector assumption:

Theorem 3.15 (Approximate spectral SVD for sparse singular vectors [WY22b]). Let A ∈ R𝑛×𝑑 whose top
𝑘 left and right singular vectors have at most 𝑠 nonzero entries. Then, there is an algorithm which computes
a rank 𝑘 orthogonal projection matrix P ∈ R𝑑×𝑑 such that

‖A−AP‖2 ≤ (1 + 𝜀) min
rank(A′)≤𝑘

‖A−A′‖2

which runs in time at most

𝑂

(︂
nnz(A)√

𝜀
+

𝑛

𝜀

)︂
log

𝑠𝑑𝑘 log 𝑛

𝜀
+ poly

(︂
𝑠, 𝑘,

1

𝜀
, log 𝑛

)︂
.

At a high level, our idea is to first identify a set of around 𝑂(𝑠𝑘) (or a slightly larger number of) coordinates
which contains the support of the top 𝑘 singular vectors, at which point we can just output the SVD of
this submatrix, padded with zeros. Thus, the difficulty lies in identifying this subset of 𝑂(𝑠𝑘) coordinates.
The work of [MM15] shows that if we know the value of the (𝑘 + 1)th singular value 𝜎𝑘+1, then we can
use a Chebyshev polynomial approximation of degree roughly 𝑞 = 1/

√
𝜀 to identify singular vectors with

singular values larger than (1+𝜀)𝜎𝑘+1 from the vectors Ag, (AA⊤)Ag, . . . , (AA⊤)𝑞Ag, known as the Krylov
subspace. Thus, the main problem to tackle is to find an algorithm to determine the value of 𝜎𝑘+1, up to
a (1 + 𝜀) factor. To do this, we introduce a two-stage algorithm. In the first step, we identify the value of
𝜎𝑘+1 up to a factor of (1 +

√
𝜀) using a combination of naive power iteration together with an efficient binary

searching technique over the singular values. In the second step, we know the value of 𝜎𝑘+1 up to a value of
(1 +

√
𝜀), and thus we can afford to make 1/

√
𝜀 guesses to the value of 𝜎𝑘+1 in powers of (1 + 𝜀), and add

𝑂(𝑠𝑘) entries to our superset of the support of the sparse singular vectors for each one of the 1/
√
𝜀 guesses.

Then, one of these guesses will guess the right value of 𝜎𝑘+1, and in total, the size of our support superset is
just 𝑂(𝑠𝑘/

√
𝜀). Our result of Theorem 3.15 follows.
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